Proteasome Composition in Cytokine-Treated Neurons and Astrocytes is Determined Mainly by Subunit Displacement

  • Kara L. Shanley
  • Che-Lin Hu
  • Oscar A. BizzozeroEmail author
Original Paper


In this study, we investigated if subunit displacement and/or alterations in proteasome biosynthesis are responsible for the changes in the levels of constitutive proteasomes (c-20S), immunoproteasomes (i-20S) and the activators PA28 and PA700 in neurons and astrocytes cultured with a cytokine mixture (IFN-γ/TNF-α/IL-1β). Exposure of both cell types to cytokines for 24 h increases mRNA and protein expression of the i-20S-specific subunit β5i and PA28α/β, and leads to a decline in the amount of the c-20S-specific subunit β5. Since β5 mRNA levels are unchanged by the cytokine treatment, it is fair to conclude that displacement of constitutive β-subunits with inducible β5i subunits is likely the mechanism underlying the decrease in c-20S. As expected, the increase in the amount of the IFN-γ-inducible subunits coincides with elevated expression of phospho-STAT-1 and interferon regulatory factor-1 (IRF-1). However, inhibition of NF-κB signaling in cytokine-treated astrocytes reduces IRF-1 expression without affecting that of i-20S, c-20S and PA28. This suggests that STAT-1 is capable of increasing the transcription of i20S-specific subunits and PA28α/β by itself. The lack of a decrease in proteasome β5 mRNA expression is consistent with the fact that Nrf1 (Nfe2l1) and Nrf2 (Nfe2l2) levels are not reduced by pro-inflammatory cytokines. In contrast, we previously found that there is a significant Nrf1 dysregulation and reduced β5 mRNA expression in the spinal cords of mice with experimental autoimmune encephalomyelitis (EAE). Thus, there are stressors in EAE, other than a pro-inflammatory environment, that are not present in cytokine-treated cells.


Astrocytes Cytokines Immunoproteasomes Neurons Nfe2l1 Nfe2l2 PA28 Proteasomes 


α7 (Psma7)

20S subunit α7

β5 (Psmb5)

C-20S subunit β5

β5i (Psmb8)

I-20S inducible subunit β5


Constitutive-20S particle


Experimental autoimmune encephalomyelitis


Histone H3


Histone deacetylase 2


Immuno-20S particle






Interferon regulatory factor-1


Mammalian target of rapamycin

Nrf1 (Nfe2l1)

Nuclear factor (erythroid-derived 2)-like 1

Nrf2 (Nfe2l2)

Nuclear factor (erythroid-derived 2)-like 2


Nuclear factor kappa-light-chain-enhancer of activated B cells


11S regulatory particle

PA28α (Psme1)

PA28 subunit α

PA28β (Psme2)

PA28 subunit β


19S regulatory particle


Pre-B-cell leukemia homeobox 1


Quantitative polymerase chain reaction

Rpt5 (Psmc3)

19S regulatory subunit 6A


Signal transducer and activator of transcription 1


Tumor necrosis factor-α



This work was supported by PHHS Grants NS082805 from the National Institutes of Health.


Funding was provided by National Institute of Neurological Disorders and Stroke (Grant No. NS082805).

Supplementary material

11064_2020_2958_MOESM1_ESM.pdf (650 kb)
Supplementary file1 (PDF 650 kb)


  1. 1.
    Rechsteiner M, Hill CP (2005) Mobilizing the proteolytic machine: cell biological roles of proteasome activators and inhibitors. Trends Cell Biol 15:27–33PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Ethen CM, Hussong SA, Reilly C, Feng X, Olsen TW, Ferrington DA (2007) Transformation of the proteasome with age-related macular degeneration. FEBS Lett 581:885–890PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Coux O, Tanaka K, Goldberg AL (1996) Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem 65:801–847PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Aki M, Shimbara N, Takashina M, Akiyama K, Kagawa S, Tamura T, Tanahashi N, Yoshimura T, Tanaka K, Ichihara A (1994) Interferon-gamma induces different subunit organizations and functional diversity of proteasomes. J Biochem 115:257–269PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Foss GS, Prydz H (1999) Interferon regulatory factor-1 mediates the interferon-c induction of the human immunoproteasome subunit multicatalytic endopeptidase complex-like-1. J Biol Chem 274:35196–35202PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Heink S, Ludwig D, Kloetzel PM, Kruger E (2005) IFN-γ-induced immune adaptation of the proteasome system is an accelerated and transient response. Proc Natl Acad Sci USA 102:9241–9246PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Ferrington DA, Gregerson DS (2012) Immunoproteasomes: structure, function, and antigen presentation. Prog Mol Biol Transl Sci 109:75–112PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Rivett AJ, Hearn AR (2004) Proteasome function in antigen presentation: immunoproteasome complexes, peptide production and interactions with viral proteins. Curr Protein Pept Sci 5:153–161PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Braun B, Glickman M, Kraft R, Dahlmann B, Kloetzel PM, Finley D, Schmidt M (1999) The base of the proteasome regulatory particle exhibits chaperone-like activity. Nat Cell Biol 1:221–226PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Li X, Thompson D, Kumar B, DeMartino GN (2014) Molecular and cellular roles of PI31 (PSMF1) protein in regulation and proteasome function. J Biol Chem 289:17392–17405PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Savulescu AF, Glickman MH (2011) Proteasome activator 200: the heat is on…. Mol Cell Proteom. CrossRefGoogle Scholar
  12. 12.
    Pickering AM, Linder RA, Zhang H, Forman HJ, Davies KJA (2012) Nrf2-dependent induction of proteasome and PA28αβ regulator are required for adaptation to oxidative stress. J Biol Chem 287:10021–10031PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Motohashi H, Katsuoka F, Shavit JA, Engel JD, Yamamoto M (2000) Positive or negative MARE-dependent transcriptional regulation is determined by the abundance of small Maf proteins. Cell 103:865–875PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Bugno M, Daniel M, Chepelev NL, Willmore WG (2015) Changing gears in Nrf1 research, from mechanisms of regulation to its role in disease and prevention. Biochim Biophys Acta 1849:1260–1276PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Kobayashi A, Kang MI, Okawa H, Ohtsuji M, Zenke Y, Chiba T, Igarashi K, Yamamoto M (2004) Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol 24:7130–7139PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Venugopal R, Jaiswal AK (1998) Nrf2 and Nrf1 in association with Jun proteins regulate antioxidant response element-mediated expression and coordinated induction of genes encoding detoxifying enzymes. Oncogene 17:3145–3256PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Biswas M, Chan JY (2010) Role of Nrf1 in antioxidant response element-mediated gene expression and beyond. Toxicol Appl Pharmacol 244:16–20PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Zhang Y, Manning B (2015) mTORC1 signaling activates NRF1 to increase cellular proteasome levels. Cell Cycle 14:2011–2017PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Villaescusa JC, Li B, Toledo EM, Riveti P, Yang S, Scott SRW, Kaiser K, Islam S, Gyllborg D, Laguna-Goya R, Landreh M, Lönnerberg P, Falk A, Bergman T, Barker RA, Linnarsson S, Selleri L, Arenas E (2016) A PBX1 transcriptional network controls dopaminergic neuron development and is impaired in Parkinson's disease. EMBO J 35:1963–1978PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Cuadrado A, Martín-Moldes Z, Ye J, Lastres-Becker I (2014) Transcription factors NRF2 and NF-κB are coordinated effectors of the Rho family, GTP-binding protein RAC1 during inflammation. J Biol Chem 289:15244–15258PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Zheng J, Dasgupta A, Bizzozero OA (2012) Changes in 20S subunit composition are largely responsible for altered proteasomal activities in experimental autoimmune encephalomyelitis. J Neurochem 121:486–494PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Shanley KL, Hu C, Bizzozero OA (2019) Decreased levels of constitutive proteasomes in experimental autoimmune encephalomyelitis may be caused by a combination of subunit displacement and reduced Nfe2l1 expression. J Neurochem. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Tremblay RG, Sikorska M, Sandhu JK, Lanthier P, Ribecco-Lutkiewicz M, Bani-Yaghoub M (2010) Differentiation of mouse Neuro 2A cells into dopamine neurons. J Neurosci Methods 186:60–67PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Lin S, Lisi L, Russo CD, Polak PE, Sharp A, Weinberg G, Kalinin S, Feinstein DL (2011) The anti-inflammatory effects of dimethylfumarate in astrocytes involve glutathione and haemoxygenase-1. ASN Neuro 3(2):e00055. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Yoshimura S, Sakai H, Nakashima S, Nozawa Y, Shinoda J, Sakai N, Yamada H (1997) Differential expression of Rho family GTP-binding proteins and protein kinase C isozymes during C6 glial cell differentiation. Mol Brain Res 45:90–98PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Vandesompele J, DePreter K, Pattyn F, Poppe B, Van Roy N, DePaepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:1–11CrossRefGoogle Scholar
  28. 28.
    Groettrup M, Ruppert T, Kuehn L, Seeger M, Standera S, Koszinowski U, Kloetzel PM (1995) The interferon-γ-inducible 11S regulator (PA28) and the LMP2/LMP7 subunits govern the peptide production by the 20S proteasome in vitro. J Biol Chem 270:23808–23815PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Waelchli R, Bollbuck B, Bruns C, Buhl T, Eder J, Feifel R, Hersperger R, Janser P, Revesz L, Zerwes HG, Schlapbach A (2006) Design and preparation of 2-benzamido-pyrimidines as inhibitors of IKK. Bioorg Med Chem Lett 16:108–112PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Ahmmed B, Kampo S, Khan M, Faqeer A, Pawan-Kumar S, Liu JW, Yan Q (2019) Rg3 inhibits gemcitabine-induced lung cancer cell invasiveness through ROS-dependent, NF-κB- and HIF-1α-mediated downregulation of PTX3. J Cell Physiol 234:10680–10697PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Barton LF, Cruz M, Rangwala R, Deepe GS, Monaco JJ (2002) Regulation of immunoproteasome subunit expression in vivo following pathogenic fungal infection. J Immunol 169:3046–3052PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Yawata M, Murata S, Tanaka K, Ishigatsubo Y, Kasahara M (2001) Nucleotide sequence analysis of the approximately 35-kb segment containing interferon-γ-inducible mouse proteasome activator genes. Immunogenetics 53:119–129PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Chatterjee-Kishore M, Wright KL, Ting GP, Stark GR (2000) How Stat1 mediates constitutive gene expression: a complex of unphosphorylated Stat1 and IRF1 supports transcription of the LMP2 gene. EMBO J 19:4111–4122PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Hayden MS, Ghosh S (2014) Regulation of NF-κB by TNF family cytokines. Semin Immunol 26:253–266PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    McDonald PP, Bald A, Cassatella MA (1997) Activation of NF-κB pathway by inflammatory stimuli in human neutrophils. Blood 89:3421–3433PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Harada H, Takahashi E, Itoh S, Harada K, Hori T, Taniguchi T (1994) Structure and regulation of the human interferon regulatory factor 1 (IRF-1) and IRF-2 genes: implications for gene network in the interferon system. Mol Cell Biol 14:1500–1509PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Contursi C, Wang IM, Gabriele L, Gadina M, O’Shea J, Morse HC, Ozato K (2000) IFN consensus sequence binding protein potentiates STAT1-dependent activation of IFNγ-responsive promoters in macrophages. Proc Natl Acad Sci USA 97:91–96PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Schwanhaüsser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M (2011) Global quantification of mammalian gene expression control. Nature 473:337–347PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Vangala R, Dudem S, Jain N, Kalivendi SV (2014) Regulation of PSMB5 protein and β subunits of mammalian proteasome by constitutively activated signal transducer and activator of transcription 3 (STAT3). J Biol Chem 289:12612–12622PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Früh K, Gossen M, Wang K, Bujard H, Peterson P, Yang Y (1994) Displacement of housekeeping proteasome subunits by MHC-encoded LMPs: a newly discovered mechanism for modulating the multicatalytic proteinase complex. EMBO J 13:3236–3244PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Chondrogianni N, Stratford FL, Trougakos IP, Friguet B, Rivett AJ, Gonos E (2003) Central role of the proteasome in senescence and survival of human fibroblasts. J Biol Chem 278:28026–28037PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Chondrogianni N, Tzavelas C, Pemberton AJ, Nezis IP, Rivett AJ, Gonos ES (2005) Overexpression of the proteasome β5 assembled subunit increases the amount of proteasome and confers ameliorated response to oxidative stress and higher survival rates. J Biol Chem 280:11840–11850PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Kabashi E, Agar JN, Hong Y, Taylor DM, Minotti S, Figlewicz DA, Durham HD (2008) Proteasomes remain intact, but show early focal alteration in their composition in a mouse model of amyotrophic lateral sclerosis. J Neurochem 105:2353–2366PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Díaz-Hernández M, Hernández F, Martín-Aparicio E, Gómez-Ramos P, Morán MA, Castaño JG, Ferrer I, Avila J, Lucas JJ (2003) Neuronal induction of the immunoproteasome in Huntington's disease. J Neurosci 23:11653–11661PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Pickering AM, Koop AL, Teoh CY, Ermak G, Grune T, Davies KJA (2010) The immunoproteasome, the 20S proteasome and the PA28αβ proteasome regulator are oxidative stress adaptive proteolytic complexes. Biochem J 432:585–594PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    McNaught K, Jnobaptiste R, Jackson T, Jengelley T (2010) The pattern of neuronal loss and survival may reflect differential expression of proteasome activators in Parkinson’s disease. Synapse 64:241–250PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Seifert U, Lukasz P, Ebstein F, Bech-Otschir D, Voigt A, Schröter F, Prozorovski T, Lange N, Steffen J, Rieger M, Kuckelkorn U, Aktas O, Kloetzel P, Krüger E (2010) Immunoproteasomes preserve protein homeostasis upon interferon-induced oxidative stress. Cell 142:613–624PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Li J, Powell SR, Wang X (2011) Enhancement of proteasome function by PA28α overexpression protects against oxidative stress. FASEB J 25:883–893PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Pickering AM, Davies KJA (2012) Differential roles of proteasome and immunoproteasome regulators Pa28α/β, Pa28γ and Pa200 in the degradation of oxidized proteins. Arch Biochem Biophys 523:181–190PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Fabre B, Kambour T, Garringes L, Amalric F, Vigneron N, Menneteau T, Stella A, Monsarrat B, Van den Eynde B, Burlet-Shiltz O, Bousquet-Dubouch MP (2015) Deciphering preferential interactions within supramolecular protein complexes: the proteasome case. Mol Syst Biol 11:771PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Cell Biology and PhysiologyUniversity of New Mexico - Health Sciences CenterAlbuquerqueUSA
  2. 2.Department of Cell Biology and PhysiologyUniversity of New Mexico School of MedicineAlbuquerqueUSA

Personalised recommendations