Advertisement

A Selective M1 and M3 Receptor Antagonist, Penehyclidine Hydrochloride, Exerts Antidepressant-Like Effect in Mice

  • Xiaojing Sun
  • Congcong Sun
  • Lingyan Zhai
  • Wei DongEmail author
Original Paper
  • 14 Downloads

Abstract

Recent studies indicate that anti-muscarinic receptor is a prospective strategy to treat depression. Although non-selective antagonist of muscarinic receptor scopolamine exhibits rapid and robust antidepressant-like effect, it still has various side effects including abuse risk. Penehyclidine hydrochloride (PHC) is a novel clinical anti-cholinergic drug derived from scopolamine in China, which selectively blocks M1 and M3 muscarinic receptor. Therefore, the objective of this study was to evaluate whether PHC would manifest antidepressant-like effects. Forced swim test (FST), tail suspension test (TST) and chronic unpredictable mild stress (CUMS) model of depression were explored to assess the antidepressant-like effect. Western blotting was further performed to detect the effects of PHC on the brain-derived neurotrophic factor (BDNF) signal cascade. Immunofluorescence was used to observe the activation of astrocyte. Moreover, different pharmacological inhibitors were applied to clarify the antidepressant-like mechanism. The results of the present experiments revealed that PHC decreased the immobility time of FST and TST in mice. In the CUMS model, PHC rapidly ameliorated anhedonia-like behavior (within 4 days), accompanying with the enhanced expression of BDNF and phosphorylation of extracellular signal-related kinase 1/2 (ERK1/2) in the hippocampus. In addition, blockade of the BDNF release by verapamil and activation of its Trk B receptor by K252a, rather than inhibition of opioid system by naloxone or sigma receptor by BD1047, abolished the antidepressant-like effects of PHC in mice. The findings suggest that PHC, an anti-muscarinic drug in clinical use, elicits rapid onset antidepressant-like effect, shedding light on the development of new antidepressants.

Keywords

Penehyclidine hydrochloride Muscarinic receptor Depression Antidepressant-like effect 

Notes

Acknowledgements

This work was supported by fund from Xuzhou Medical University (2018kj05), and Priority Academic Program Development of Jiangsu Higher Education Institutes (PAPD).

Compliance with Ethical Standards

Conflict of Interest

The authors declare no conflict of interest.

References

  1. 1.
    Phillips JL, Norris S, Talbot J, Birmingham M, Hatchard T, Ortiz A, Owoeye O, Batten LA, Blier P (2019) Single, repeated, and maintenance ketamine infusions for treatment-resistant depression: a randomized controlled trial. Am J Psychiatry 176:401–409.  https://doi.org/10.1176/appi.ajp.2018.18070834 CrossRefPubMedGoogle Scholar
  2. 2.
    Wang Y, Xie L, Gao C, Zhai L, Zhang N, Guo L (2018) Astrocytes activation contributes to the antidepressant-like effect of ketamine but not scopolamine. Pharmacol Biochem Behav 170:1–8.  https://doi.org/10.1016/j.pbb.2018.05.001 CrossRefPubMedGoogle Scholar
  3. 3.
    Chaki S (2017) Beyond ketamine: new approaches to the development of safer antidepressants. Curr Neuropharmacol 15:963–976.  https://doi.org/10.2174/1570159X15666170221101054 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ghosal S, Bang E, Yue W, Hare BD, Lepack AE, Girgenti MJ, Duman RS (2018) Activity-dependent brain-derived neurotrophic factor release is required for the rapid antidepressant actions of scopolamine. Biol Psychiatry 83:29–37.  https://doi.org/10.1016/j.biopsych.2017.06.017 CrossRefPubMedGoogle Scholar
  5. 5.
    Janowsky DS, el-Yousef MK, Davis JM, Sekerke HJ (1972) A cholinergic–adrenergic hypothesis of mania and depression. Lancet 2:632–635.  https://doi.org/10.1016/s0140-6736(72)93021-8 CrossRefPubMedGoogle Scholar
  6. 6.
    Furey ML, Drevets WC (2006) Antidepressant efficacy of the antimuscarinic drug scopolamine: a randomized, placebo-controlled clinical trial. Arch Gen Psychiatry 63:1121–1129.  https://doi.org/10.1001/archpsyc.63.10.1121 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Renner UD, Oertel R, Kirch W (2005) Pharmacokinetics and pharmacodynamics in clinical use of scopolamine. Ther Drug Monit 27:655–665CrossRefGoogle Scholar
  8. 8.
    Drevets WC, Furey ML (2010) Replication of scopolamine's antidepressant efficacy in major depressive disorder: a randomized, placebo-controlled clinical trial. Biol Psychiatry 67:432–438.  https://doi.org/10.1016/j.biopsych.2009.11.021 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Wohleb ES, Wu M, Gerhard DM, Taylor SR, Picciotto MR, Alreja M, Duman RS (2016) GABA interneurons mediate the rapid antidepressant-like effects of scopolamine. J Clin Invest 126:2482–2494.  https://doi.org/10.1172/JCI85033 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Navarria A, Wohleb ES, Voleti B, Ota KT, Dutheil S, Lepack AE, Dwyer JM, Fuchikami M, Becker A, Drago F, Duman RS (2015) Rapid antidepressant actions of scopolamine: role of medial prefrontal cortex and M1-subtype muscarinic acetylcholine receptors. Neurobiol Dis 82:254–261.  https://doi.org/10.1016/j.nbd.2015.06.012 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Voleti B, Navarria A, Liu RJ, Banasr M, Li N, Terwilliger R, Sanacora G, Eid T, Aghajanian G, Duman RS (2013) Scopolamine rapidly increases Mammalian target of rapamycin complex 1 signaling, synaptogenesis, and antidepressant behavioral responses. Biol Psychiatry 74:742–749.  https://doi.org/10.1016/j.biopsych.2013.04.025 CrossRefPubMedGoogle Scholar
  12. 12.
    Lakstygal AM, Kolesnikova TO, Khatsko SL, Zabegalov KN, Volgin AD, Demin KA, Shevyrin VA, Wappler-Guzzetta EA, Kalueff AV (2019) DARK classics in chemical neuroscience: atropine, scopolamine, and other anticholinergic deliriant hallucinogens. ACS Chem Neurosci 10:2144–2159.  https://doi.org/10.1021/acschemneuro.8b00615 CrossRefPubMedGoogle Scholar
  13. 13.
    Han XY, Liu H, Liu CH, Wu B, Chen LF, Zhong BH, Liu KL (2005) Synthesis of the optical isomers of a new anticholinergic drug, penehyclidine hydrochloride (8018). Bioorg Med Chem Lett 15:1979–1982.  https://doi.org/10.1016/j.bmcl.2005.02.071 CrossRefPubMedGoogle Scholar
  14. 14.
    Ma TF, Zhou L, Wang Y, Qin SJ, Zhang Y, Hu B, Yan JZ, Ma X, Zhou CH, Gu SL (2013) A selective M1 and M3 receptor antagonist, penehyclidine hydrochloride, prevents postischemic LTP: involvement of NMDA receptors. Synapse 67:865–874.  https://doi.org/10.1002/syn.21693 CrossRefPubMedGoogle Scholar
  15. 15.
    Wang Y, Gao Y, Ma J (2018) Pleiotropic effects and pharmacological properties of penehyclidine hydrochloride. Drug Des Devel Ther 12:3289–3299.  https://doi.org/10.2147/DDDT.S177435 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wang X, Chen S, Ni J, Cheng J, Jia J, Zhen X (2018) miRNA-3473b contributes to neuroinflammation following cerebral ischemia. Cell Death Dis 9:11.  https://doi.org/10.1038/s41419-017-0014-7 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Porsolt RD, Le Pichon M, Jalfre M (1977) Depression: a new animal model sensitive to antidepressant treatments. Nature 266:730–732CrossRefGoogle Scholar
  18. 18.
    Wang Y, Ni J, Gao C, Xie L, Zhai L, Cui G, Yin X (2019) Mitochondrial transplantation attenuates lipopolysaccharide- induced depression-like behaviors. Prog Neuro-Psychopharmacol Biol Psychiatry 93:240–249.  https://doi.org/10.1016/j.pnpbp.2019.04.010 CrossRefGoogle Scholar
  19. 19.
    Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 85:367–370.  https://doi.org/10.1007/bf00428203 CrossRefPubMedGoogle Scholar
  20. 20.
    Wang Y, Guo L, Jiang HF, Zheng LT, Zhang A, Zhen XC (2016) Allosteric modulation of sigma-1 receptors elicits rapid antidepressant activity. CNS Neurosci Ther 22:368–377.  https://doi.org/10.1111/cns.12502 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Antoniuk S, Bijata M, Ponimaskin E, Wlodarczyk J (2019) Chronic unpredictable mild stress for modeling depression in rodents: meta-analysis of model reliability. Neurosci Biobehav Rev 99:101–116.  https://doi.org/10.1016/j.neubiorev.2018.12.002 CrossRefPubMedGoogle Scholar
  22. 22.
    Wang Y, Jiang HF, Ni J, Guo L (2019) Pharmacological stimulation of sigma-1 receptor promotes activation of astrocyte via ERK1/2 and GSK3beta signaling pathway. Naunyn Schmiedebergs Arch Pharmacol 392:801–812.  https://doi.org/10.1007/s00210-019-01632-3 CrossRefPubMedGoogle Scholar
  23. 23.
    Feng M, Wang L, Chang S, Yuan P (2018) Penehyclidine hydrochloride regulates mitochondrial dynamics and apoptosis through p38MAPK and JNK signal pathways and provides cardioprotection in rats with myocardial ischemia-reperfusion injury. Eur J Pharm Sci 121:243–250.  https://doi.org/10.1016/j.ejps.2018.05.023 CrossRefPubMedGoogle Scholar
  24. 24.
    Wang Y, Ma T, Zhou L, Li M, Sun XJ, Wang YG, Gu S (2013) Penehyclidine hydrochloride protects against oxygen and glucose deprivation injury by modulating amino acid neurotransmitters release. Neurol Res 35:1022–1028.  https://doi.org/10.1179/1743132813Y.0000000247 CrossRefPubMedGoogle Scholar
  25. 25.
    Wu X, Kong Q, Xia Z, Zhan L, Duan W, Song X (2019) Penehyclidine hydrochloride alleviates lipopolysaccharideinduced acute lung injury in rats: potential role of caveolin1 expression upregulation. Int J Mol Med 43:2064–2074.  https://doi.org/10.3892/ijmm.2019.4117 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Saricicek A, Esterlis I, Maloney KH, Mineur YS, Ruf BM, Muralidharan A, Chen JI, Cosgrove KP, Kerestes R, Ghose S, Tamminga CA, Pittman B, Bois F, Tamagnan G, Seibyl J, Picciotto MR, Staley JK, Bhagwagar Z (2012) Persistent beta2*-nicotinic acetylcholinergic receptor dysfunction in major depressive disorder. Am J Psychiatry 169:851–859.  https://doi.org/10.1176/appi.ajp.2012.11101546 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Mineur YS, Mose TN, Blakeman S, Picciotto MR (2018) Hippocampal alpha7 nicotinic ACh receptors contribute to modulation of depression-like behaviour in C57BL/6J mice. Br J Pharmacol 175:1903–1914.  https://doi.org/10.1111/bph.13769 CrossRefPubMedGoogle Scholar
  28. 28.
    Lebois EP, Thorn C, Edgerton JR, Popiolek M, Xi S (2018) Muscarinic receptor subtype distribution in the central nervous system and relevance to aging and Alzheimer's disease. Neuropharmacology 136:362–373.  https://doi.org/10.1016/j.neuropharm.2017.11.018 CrossRefPubMedGoogle Scholar
  29. 29.
    Lepack AE, Fuchikami M, Dwyer JM, Banasr M, Duman RS (2014) BDNF release is required for the behavioral actions of ketamine. Int J Neuropsychopharmacol.  https://doi.org/10.1093/ijnp/pyu033 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Williams NR, Heifets BD, Blasey C, Sudheimer K, Pannu J, Pankow H, Hawkins J, Birnbaum J, Lyons DM, Rodriguez CI, Schatzberg AF (2018) Attenuation of antidepressant effects of ketamine by opioid receptor antagonism. Am J Psychiatry 175:1205–1215.  https://doi.org/10.1176/appi.ajp.2018.18020138 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Robson MJ, Elliott M, Seminerio MJ, Matsumoto RR (2012) Evaluation of sigma (sigma) receptors in the antidepressant-like effects of ketamine in vitro and in vivo. Eur Neuropsychopharmacol 22:308–317.  https://doi.org/10.1016/j.euroneuro.2011.08.002 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Xiaojing Sun
    • 1
  • Congcong Sun
    • 2
  • Lingyan Zhai
    • 3
  • Wei Dong
    • 1
    Email author
  1. 1.Basic Medical CollegeXuzhou Medical UniversityXuzhouChina
  2. 2.Department of NeurologyQilu Hospital of Shandong UniversityJinanChina
  3. 3.Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical UniversityXuzhouChina

Personalised recommendations