Skip to main content

Advertisement

Log in

Effects of Restraint Water-Immersion Stress-Induced Gastric Mucosal Damage on Astrocytes and Neurons in the Nucleus Raphe Magnus of Rats via the ERK1/2 Signaling Pathway

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Restraint water-immersion stress (RWIS) consists of psychological and physical stimulation, and it has been utilized in the research of gastric mucosal damage. It has been shown by previous studies that the nucleus raphe magnus (NRM) is closely involved in the gastrointestinal function, but its functions on the stress-induced gastric mucosal injury (SGMI) have not been thoroughly elucidated to date. Consequently, in this research, we aim to measure the expression of astrocytic glial fibrillary acidic protein (GFAP), neuronal c-Fos, and phosphorylation extracellular signal regulated kinase 1/2 (p-ERK1/2) in the process of RWIS with immunohistochemistry and western blot methods. What is more, we detect the relation between astrocytes and neurons throughout the stress procedure and explore the regulation of the ERK1/2 signaling pathway on the activity of astrocytes and neurons after RWIS. The results indicated that all three proteins expression multiplied following peaked 3 h substantially. The SMGI, astrocyte and neuron activity were affected after the astrocytotoxin L-A-aminohexanedioic acid (L-AA) and c-fos antisense oligonucleotide (ASO) injections. After the injection of PD98059, the gastric mucosal injury, astrocyte and neuron activity significantly fell off. These results suggested that RWIS-induced activity of astrocytes and neurons in the NRM may play a significant part in gastric mucosa damage via the ERK1/2 signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. de Kloet ER, Joëls M, Holsboer F (2005) Stress and the brain: from adaptation to disease. Nat Rev Neurosci 6:463

    Article  CAS  PubMed  Google Scholar 

  2. Debnath S, Guha D (2007) Role of Moringa oleifera on enterochromaffin cell count and serotonin content of experimental ulcer model. Indian J Exp Biol 45:726–731

    CAS  PubMed  Google Scholar 

  3. Sun H, Li R, Xu S, Liu Z, Ma X (2016) Hypothalamic astrocytes respond to gastric mucosal damage induced by restraint water-immersion stress in rat. Front Behav Neurosci 10:210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tsagareli MG, Ivliane N, Nana T, Gulnaz G (2011) Tolerance to non-opioid analgesics is opioid sensitive in the nucleus raphe magnus. Front Neurosci 5:92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Flores RA, Da ES, Ribas AS, Taschetto A, Zampieri TT, Donato JJ et al (2018) Evaluation of food intake and Fos expression in serotonergic neurons of raphe nuclei after intracerebroventricular injection of adrenaline in free-feeding rats. Brain Res 1678:153–163

    Article  CAS  PubMed  Google Scholar 

  6. Jankowski MP, Sesack SR (2004) Prefrontal cortical projections to the rat dorsal raphe nucleus: ultrastructural features and associations with serotonin and gamma-aminobutyric acid neurons. J Comp Neurol 468:518–529

    Article  CAS  PubMed  Google Scholar 

  7. Amat J, Baratta MV, Paul E, Bland ST, Watkins LR, Maier SF (2005) Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus. Nat Neurosci 8:365

    Article  CAS  PubMed  Google Scholar 

  8. Silva LFSD, Menescal-De-Oliveira L (2007) Role of opioidergic and GABAergic neurotransmission of the nucleus raphe magnus in the modulation of tonic immobility in guinea pigs. Brain Res Bull 72:25–31

    Article  CAS  PubMed  Google Scholar 

  9. Gargaglioni LH, Coimbra NC, Branco LG (2003) The nucleus raphe magnus modulates hypoxia-induced hyperventilation but not anapyrexia in rats. Neurosci Lett 347:121–125

    Article  CAS  PubMed  Google Scholar 

  10. Wei F, Dubner R, Ren K (1999) Nucleus reticularis gigantocellularis and nucleus raphe magnus in the brain stem exert opposite effects on behavioral hyperalgesia and spinal Fos protein expression after peripheral inflammation. Pain 80:127–141

    Article  CAS  PubMed  Google Scholar 

  11. Qiao H, An SC, Xu C (2011) The relationships among raphe magnus nucleus, locus coeruleus and dorsal motor nucleus of vagus in the descending regulation of gastric motility. Chin J Appl Physiol 27:124

    Google Scholar 

  12. Lowry CA, Hale MW, Evans AK, Heerkens J, Staub DR, Gasser PJ et al (2010) Serotonergic systems, anxiety, and affective disorder. Ann NY Acad Sci 1148:86–94

    Article  Google Scholar 

  13. Kranz GS, Kasper S, Lanzenberger R (2010) Reward and the serotonergic system. Neuroscience 166:1023

    Article  CAS  PubMed  Google Scholar 

  14. Kapoor V, Provost AC, Agarwal P, Murthy VN (2016) Activation of raphe nuclei triggers rapid and distinct effects on parallel olfactory bulb output channels. Nat Neurosci 19:271–282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hentall ID, Pinzon A, Noga BR (2006) Spatial and temporal patterns of serotonin release in the rat’s lumbar spinal cord following electrical stimulation of the nucleus raphe magnus. Neuroscience 142:893–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang LS, Wu R (1992) Effects of electrical cauterization of nucleus raphe magnus on gastric acid output and serum gastrin level in rats. Sheng LI Xue Bao 44:164–169

    CAS  PubMed  Google Scholar 

  17. Li YM, Gastroenterology DO (2006) Dynamic functional and ultrastructural changes of gastric parietal cells induced by water immersion-restraint stress in rats. World J Gastroenterol 12:3368–3372

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jean A (2001) Brain stem control of swallowing: neuronal network and cellular mechanisms. Physiol Rev 81:929–969

    Article  CAS  PubMed  Google Scholar 

  19. Tian R, Wu X, Hagemann TL, Sosunov AA, Messing A, McKhann GM et al (2010) Alexander disease mutant glial fibrillary acidic protein compromises glutamate transport in astrocytes. J Neuropathol Exp Neurol 69:335–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Radwanska K, Caboche J, Kaczmarek L (2005) Extracellular signal-regulated kinases (ERKs) modulate cocaine-induced gene expression in the mouse amygdala. Eur J Neurosci 22:939–948

    Article  PubMed  Google Scholar 

  21. Lima A, Sardinha VM, Oliveira AF, Reis M, Mota C, Silva MA et al (2014) Astrocyte pathology in the prefrontal cortex impairs the cognitive function of rats. Mol Psychiatry 19:834

    Article  CAS  PubMed  Google Scholar 

  22. Chadet S, Jelassi B, Wannous R, Angoulvant D, Chevalier S, Besson P et al (2014) The activation of P2Y2 receptors increases MCF-7 breast cancer cells migration through the MEK-ERK1/2 signalling pathway. Carcinogenesis 35:1238–1247

    Article  CAS  PubMed  Google Scholar 

  23. Guth PH (1992) Current concepts in gastric microcirculatory pathophysiology. Yale J Biol Med 65:677–688

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Picciotto MR, Kenny PJ (2013) Molecular mechanisms underlying behaviors related to nicotine addiction. Cold Spring Harbor Perspect Med 3:a012112

    Article  CAS  Google Scholar 

  25. Zhang YX, Lundeberg T, Yu LC (2000) Involvement of neuropeptide Y and Y1 receptor in antinociception in nucleus raphe magnus of rats. Regul Pept 95:109–113

    Article  CAS  PubMed  Google Scholar 

  26. Sugai GC, Freire AO, Tabosa A, Yamamura Y, Tufik S, Mello LE (2004) Serotonin involvement in the electroacupuncture- and moxibustion-induced gastric emptying in rats. Physiol Behav 82:855–861

    Article  CAS  PubMed  Google Scholar 

  27. Huang Y, Broddajansen G, Lundeberg T, Yu LC (2000) Anti-nociceptive effects of calcitonin gene-related peptide in nucleus raphe magnus of rats: an effect attenuated by naloxone. Brain Res 873:54–59

    Article  CAS  PubMed  Google Scholar 

  28. Lambert GA, Hoskin KL, Zagami AS (2008) Cortico-NRM influences on trigeminal neuronal sensation. Cephalalgia 28:640–652

    Article  CAS  PubMed  Google Scholar 

  29. Zhang YY, Zhu WX, Cao GH, Cui XY, Ai HB (2009) c-Fos expression in the supraoptic nucleus is the most intense during different durations of restraint water-immersion stress in the rat. J Physiol Sci 59:367–375

    Article  CAS  PubMed  Google Scholar 

  30. Fan F, Li L, Liu W, Yang M, Ma X, Sun H. Astrocytes and Neurons in Locus Coeruleus Mediate Restraint Water Immersion Stress-Induced Gastric Mucosal Damage Through the ERK1/2 Signaling Pathway. Neuroscience Letters 2018

  31. Yang J, Yang Y, Chen JM, Liu WY, Wang CH, Lin BC (2007) Central oxytocin enhances antinociception in the rat. Peptides 28:1113–1119

    Article  CAS  PubMed  Google Scholar 

  32. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35

    Article  PubMed  Google Scholar 

  33. Newman EA (2003) New roles for astrocytes: Regulation of synaptic transmission. Trends Neurosci 26:536–542

    Article  CAS  PubMed  Google Scholar 

  34. Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32:638–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Stogsdill JA, Eroglu C (2017) The interplay between neurons and glia in synapse development and plasticity. Curr Opin Neurobiol 42:1–8

    Article  CAS  PubMed  Google Scholar 

  36. Takano T, Tian GF, Peng W, Lou N, Libionka W, Han X et al (2006) Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 9:260

    Article  CAS  Google Scholar 

  37. Araque A, Carmignoto G, Haydon PG, Oliet SH, Robitaille R, Volterra A (2014) Gliotransmitters travel in time and space. Neuron 81:728–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Perea G, Gómez R, Mederos S, Covelo A, Ballesteros JJ, Schlosser L et al (2016) Activity-dependent switch of GABAergic inhibition into glutamatergic excitation in astrocyte-neuron networks. Elife 5:e20362

    Article  PubMed  PubMed Central  Google Scholar 

  39. Abdul HM, Butterfield DA (2007) Involvement of PI3 K/PKG/ERK1/2 signaling pathways in cortical neurons to trigger protection by cotreatment of acetyl-L-carnitine and alpha-lipoic acid against HNE-mediated oxidative stress and neurotoxicity: implications for Alzheimer’s disease. Free Radical Biol Med 42:371–384

    Article  CAS  Google Scholar 

  40. Perkinton MS, Ip J, Wood GL, Crossthwaite AJ, Williams RJ (2002) Phosphatidylinositol 3-kinase is a central mediator of NMDA receptor signalling to MAP kinase (Erk1/2), Akt/PKB and CREB in striatal neurones. J Neurochem 80:239–254

    Article  CAS  PubMed  Google Scholar 

  41. Brown P, Gerfen CR (2006) Plasticity within striatal direct pathway neurons following neonatal dopamine depletion is mediated through a novel functional coupling of serotonin 5-HT2 receptors to the ERK 1/2 Map Kinase pathway. J Comp Neurol 498:415–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gilley R, March HN, Cook SJ (2009) ERK1/2, but not ERK5, is necessary and sufficient for phosphorylation and activation of c-Fos. Cell Signal 21:969–977

    Article  CAS  PubMed  Google Scholar 

  43. Cheng P, Alberts I, Li X (2013) The role of ERK1/2 in the regulation of proliferation and differentiation of astrocytes in developing brain. Int J Dev Neurosci Off J Int Soc Dev Neurosci 31:783–789

    Article  CAS  Google Scholar 

  44. Wang H, Ubl JJ, Stricker R, Reiser G (2002) Thrombin (PAR-1)-induced proliferation in astrocytes via MAPK involves multiple signaling pathways. Am J Physiol Cell Physiol 283:C1351

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported according to the National Natural Science Foundation of China (No. 31672286) and the Natural Science Foundation of Shandong Province, China (ZR2013CM010, ZR2012HM061, and ZR2018BC024).

Author information

Authors and Affiliations

Authors

Contributions

XM and HS formulated the study’s design. FC, MY, and XG carried the learning out and analyzed the experimental data. The manuscript was drafted by FC. XM and HS corrected the paper for significant noetic content.

Corresponding authors

Correspondence to Xiaoli Ma or Haiji Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, F., Yang, M., Geng, X. et al. Effects of Restraint Water-Immersion Stress-Induced Gastric Mucosal Damage on Astrocytes and Neurons in the Nucleus Raphe Magnus of Rats via the ERK1/2 Signaling Pathway. Neurochem Res 44, 1841–1850 (2019). https://doi.org/10.1007/s11064-019-02818-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-019-02818-0

Keywords

Navigation