Skip to main content

Advertisement

Log in

Primary Coenzyme Q deficiency Due to Novel ADCK3 Variants, Studies in Fibroblasts and Review of Literature

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Primary deficiency of coenzyme Q10 (CoQ10 ubiquinone), is classified as a mitochondrial respiratory chain disorder with phenotypic variability. The clinical manifestation may involve one or multiple tissue with variable severity and presentation may range from infancy to late onset. ADCK3 gene mutations are responsible for the most frequent form of hereditary CoQ10 deficiency (Q10 deficiency-4 OMIM #612016) which is mainly associated with autosomal recessive spinocerebellar ataxia (ARCA2, SCAR9). Here we provide the clinical, biochemical and genetic investigation for unrelated three nuclear families presenting an autosomal form of Spino-Cerebellar Ataxia due to novel mutations in the ADCK3 gene. Using next generation sequence technology we identified a homozygous Gln343Ter mutation in one family with severe, early onset of the disease and compound heterozygous mutations of Gln343Ter and Ser608Phe in two other families with variable manifestations. Biochemical investigation in fibroblasts showed decreased activity of the CoQ dependent mitochondrial respiratory chain enzyme succinate cytochrome c reductase (complex II + III). Exogenous CoQ slightly improved enzymatic activity, ATP production and decreased oxygen free radicals in some of the patient’s cells. Our results are presented in comparison to previously reported mutations and expanding the clinical, molecular and biochemical spectrum of ADCK3 related CoQ10 deficiencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Quinzii CM, DiMauro S, Hirano M (2007) Human coenzyme Q10 deficiency. Neurochem Res 32:723–727. https://doi.org/10.1097/WCO.0b013e32834ab528

    Article  CAS  PubMed  Google Scholar 

  2. Emmanuele V, López LC, Berardo A, Naini A, Tadesse S, Wen B, D’Agostino E, Solomon M, DiMauro S, Quinzii C, Hirano M (2012) Heterogeneity of coenzyme Q10 deficiency: patient study and literature review. Arch Neurol 69:978–983. https://doi.org/10.1001/archneurol.2012.206

    Article  PubMed  PubMed Central  Google Scholar 

  3. Laredj LN, Licitra F, Puccio HM (2014) The molecular genetics of coenzyme Q biosynthesis in health and disease. Biochimie 100:78–87. https://doi.org/10.1016/j.biochi.2013.12.006

    Article  CAS  PubMed  Google Scholar 

  4. Quinzii CM, Emmanuele V, Hirano M (2014) Clinical presentations of coenzyme q10 deficiency syndrome. Mol Syndromol 5:141–146. https://doi.org/10.1159/000360490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lagier-Tourenne C, Tazir M, López LC et al (2008) ADCK3, an ancestral kinase, is mutated in a form of recessive ataxia associated with coenzyme Q10 deficiency. Am J Hum Genet 82:661–672. https://doi.org/10.1016/j.ajhg.2007.12.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mollet J, Delahodde A, Serre V, Chretien D, Schlemmer D, Lombes A, Boddaert N, Desguerre I, de Lonlay P, de Baulny HO, Munnich A, Rötig A (2008) CABC1 gene mutations cause ubiquinone deficiency with cerebellar ataxia and seizures. Am J Hum Genet 82:623–630. https://doi.org/10.1016/j.ajhg.2007.12.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Stefely JA, Licitra F, Laredj L et al (2016) Cerebellar ataxia and coenzyme Q deficiency through loss of unorthodox kinase activity. Mol Cell 63:608–620. https://doi.org/10.1016/j.molcel.2016.06.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gerards M, van den Bosch B, Calis C, Schoonderwoerd K, van Engelen K, Tijssen M, de Coo R, van der Kooi A, Smeets H (2010) Nonsense mutations in CABC1/ADCK3 cause progressive cerebellar ataxia and atrophy. Mitochondrion 10:510–515. https://doi.org/10.1016/j.mito.2010.05.008

    Article  CAS  PubMed  Google Scholar 

  9. Horvath R, Czermin B, Gulati S, Demuth S, Houge G, Pyle A, Dineiger C, Blakely EL, Hassani A, Foley C, Brodhun M, Storm K, Kirschner J, Gorman GS, Lochmüller H, Holinski-Feder E, Taylor RW, Chinnery PF (2012) Adult-onset cerebellar ataxia due to mutations in CABC1/ADCK3. J Neurol Neurosurg Psychiatry 83:174–178. https://doi.org/10.1136/jnnp-2011-301258

    Article  PubMed  Google Scholar 

  10. Blumkin L, Leshinsky-Silver E, Zerem A, Yosovich K, Lerman-Sagie T, Lev D (2014) Heterozygous mutations in the ADCK3 gene in siblings with cerebellar atrophy and extreme phenotypic variability. JIMD Rep 12:103–107. https://doi.org/10.1007/8904_2013_251

    Article  PubMed  Google Scholar 

  11. Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26:589–595. https://doi.org/10.1093/bioinformatics/btp698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. https://doi.org/10.1093/bioinformatics/btp352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303. https://doi.org/10.1101/gr.107524.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, Flicek P, Cunningham F (2016) The ensembl variant effect predictor. Genome Biol 17:122. https://doi.org/10.1186/s13059-016-0974-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ben-Meir A, Yahalomi S, Moshe B, Shufaro Y, Reubinoff B, Saada A (2015) Coenzyme Q-dependent mitochondrial respiratory chain activity in granulosa cells is reduced with aging. Fertil Steril 104:724–727. https://doi.org/10.1016/j.fertnstert.2015.05.023

    Article  CAS  PubMed  Google Scholar 

  16. Reisch AS, Elpeleg O (2007) Biochemical assays for mitochondrial activity: assays of TCA cycle enzymes and PDHc. Methods Cell Biol 80:199–222. https://doi.org/10.1016/S0091-679X(06)80010-5

    Article  CAS  PubMed  Google Scholar 

  17. Golubitzky A, Dan P, Weissman S, Link G, Wikstrom JD, Saada A (2011) Screening for active small molecules in mitochondrial complex I deficient patient’s fibroblasts, reveals AICAR as the most beneficial compound. PLoS ONE 6:e26883. https://doi.org/10.1371/journal.pone.0026883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Douiev L, Soiferman D, Alban C, Saada A (2016) The effects of ascorbate, N-acetylcysteine, and resveratrol on fibroblasts from patients with mitochondrial disorders. J Clin Med. 6pii:E1. https://doi.org/10.3390/jcm6010001

    Article  CAS  Google Scholar 

  19. Yu-Wai-Man P, Soiferman D, Moore DG, Burté F, Saada A (2017) Evaluating the therapeutic potential of idebenone and related quinone analogues in Leber hereditary optic neuropathy. Mitochondrion 36:36–42. https://doi.org/10.1016/j.mito.2017.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hikmat O, Tzoulis C, Knappskog PM, Johansson S, Boman H, Sztromwasser P, Lien E, Brodtkorb E, Ghezzi D, Bindoff LA (2016) ADCK3 mutations with epilepsy, stroke-like episodes and ataxia: A POLG mimic? Eur J Neurol 23:1188–1194. https://doi.org/10.1111/ene.13003

    Article  CAS  PubMed  Google Scholar 

  21. Pronicka E, Piekutowska-Abramczuk D, Ciara E, Trubicka J, Rokicki D, Karkucińska-Więckowska A, Pajdowska M, Jurkiewicz E, Halat P, Kosińska J, Pollak A, Rydzanicz M, Stawinski P, Pronicki M, Krajewska-Walasek M, Płoski R (2016) New perspective in diagnostics of mitochondrial disorders: two years’ experience with whole-exome sequencing at a national paediatric centre. J Transl Med 14:174. https://doi.org/10.1186/s12967-016-0930-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yubero D, Allen G, Artuch R, Montero R (2017) The value of coenzyme Q10 determination in mitochondrial patients. J Clin Med 6pii:E37. https://doi.org/10.3390/jcm6040037

    Article  CAS  Google Scholar 

Web Resources

Download references

Acknowledgements

AS is supported by the Pakula family, via the American Friends of the Hebrew University of Jerusalem. The molecular genetics evaluation is supported by Ginatuna Association, Sakhnin City, POB 1115, Israel.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adel Shalata or Ann Saada.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Special issue in honor of Professor Vera Adam-Vizi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shalata, A., Edery, M., Habib, C. et al. Primary Coenzyme Q deficiency Due to Novel ADCK3 Variants, Studies in Fibroblasts and Review of Literature. Neurochem Res 44, 2372–2384 (2019). https://doi.org/10.1007/s11064-019-02786-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-019-02786-5

Keywords

Navigation