Advertisement

MicroRNAs and Regeneration in Animal Models of CNS Disorders

  • Tamara RoitbakEmail author
Original Paper

Abstract

microRNAs (miRNAs) are recently identified small RNA molecules that regulate gene expression and significantly influence the essential cellular processes associated with CNS repair after trauma and neuropathological conditions including stroke and neurodegenerative disorders. A number of specific miRNAs are implicated in regulating the development and propagation of CNS injury, as well as its subsequent regeneration. The review focuses on the functions of the miRNAs and their role in brain recovery following CNS damage. The article introduces a brief description of miRNA biogenesis and mechanisms of miRNA-induced gene suppression, followed by an overview of miRNAs involved in the processes associated with CNS repair, including neuroprotection, neuronal plasticity and axonal regeneration, vascular reorganization, neuroinflammation, and endogenous stem cell activation. Specific emphasis is placed on the role of multifunctional miRNA miR-155, as it appears to be involved in multiple neurorestorative processes during different CNS pathologies. In association with our own studies on miR-155, I introduce a new and unexplored approach to cerebral regeneration: regulation of brain tissue repair through a direct modulation of specific miRNA activity. The review concludes with discussion on the challenges and the future potential of miRNA-based therapeutic approaches to CNS repair.

Keywords

MicroRNA MiR-155 Neurorestoration Post-stroke inflammation Cerebral blood flow Functional recovery 

Abbreviations

NogoA

Neurite outgrowth inhibitor

TGF-β

Transforming growth factor beta

VEGF

Vascular endothelial growth factor

VE

Cadherin-vascular endothelial cadherin

TBI

Traumatic brain injury

Rheb

Ras homolog enriched in brain

mTOR

Mammalian target of rapamycin

Rictor

Rapamycin-insensitive companion of mammalian target of rapamycin

C/EBP-β

CCAAT/enhancer-binding protein beta

BMP

Bone morphogenetic protein

NO

Nitric oxide

JAK

Janus kinase

STAT

Signal transducers and activators of transcription

SOCS

Suppressor of cytokine signaling

SHIP

Src homology 2 (SH2) domain-containing protein-tyrosine phosphatase

LPS

Lipopolysaccharide

Notes

Funding

This work was supported by the National Institute of Neurological Disorders and Stroke-NIH R01NS082225 Grant.

Compliance with Ethical Standards

Conflict of interest

The author declares no competing financial interest.

References

  1. 1.
    Sun W, Julie Li YS, Huang HD, Shyy JY, Chien S (2010) microRNA: a master regulator of cellular processes for bioengineering systems. Annu Rev Biomed Eng 12:1–27.  https://doi.org/10.1146/annurev-bioeng-070909-105314 PubMedCrossRefGoogle Scholar
  2. 2.
    Fabian MR, Sonenberg N (2012) The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol 19(6):586–593.  https://doi.org/10.1038/nsmb.2296 PubMedCrossRefGoogle Scholar
  3. 3.
    Bartel DP (2018) Metazoan microRNAs. Cell 173(1):20–51.  https://doi.org/10.1016/j.cell.2018.03.006 PubMedCrossRefGoogle Scholar
  4. 4.
    Wickens M, Takayama K (1994) RNA. Deviants–or emissaries. Nature 367(6458):17–18.  https://doi.org/10.1038/367017a0 PubMedCrossRefGoogle Scholar
  5. 5.
    Ruvkun G, Wightman B, Ha I (2004) The 20 years it took to recognize the importance of tiny RNAs. Cell 116 (2 Suppl):S93–S96PubMedCrossRefGoogle Scholar
  6. 6.
    Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105.  https://doi.org/10.1101/gr.082701.108 PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Londin E, Loher P, Telonis AG, Quann K, Clark P, Jing Y, Hatzimichael E, Kirino Y, Honda S, Lally M, Ramratnam B, Comstock CE, Knudsen KE, Gomella L, Spaeth GL, Hark L, Katz LJ, Witkiewicz A, Rostami A, Jimenez SA, Hollingsworth MA, Yeh JJ, Shaw CA, McKenzie SE, Bray P, Nelson PT, Zupo S, Van Roosbroeck K, Keating MJ, Calin GA, Yeo C, Jimbo M, Cozzitorto J, Brody JR, Delgrosso K, Mattick JS, Fortina P, Rigoutsos I (2015) Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs. Proc Natl Acad Sci USA 112(10):E1106–E1115.  https://doi.org/10.1073/pnas.1420955112 PubMedCrossRefGoogle Scholar
  8. 8.
    Ludwig N, Leidinger P, Becker K, Backes C, Fehlmann T, Pallasch C, Rheinheimer S, Meder B, Stahler C, Meese E, Keller A (2016) Distribution of miRNA expression across human tissues. Nucleic Acids Res 44(8):3865–3877.  https://doi.org/10.1093/nar/gkw116 PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379.  https://doi.org/10.1146/annurev-biochem-060308-103103 PubMedCrossRefGoogle Scholar
  10. 10.
    Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12(2):99–110.  https://doi.org/10.1038/nrg2936 PubMedCrossRefGoogle Scholar
  11. 11.
    Kawamata T, Seitz H, Tomari Y (2009) Structural determinants of miRNAs for RISC loading and slicer-independent unwinding. Nat Struct Mol Biol 16(9):953–960.  https://doi.org/10.1038/nsmb.1630 PubMedCrossRefGoogle Scholar
  12. 12.
    Yoda M, Kawamata T, Paroo Z, Ye X, Iwasaki S, Liu Q, Tomari Y (2010) ATP-dependent human RISC assembly pathways. Nat Struct Mol Biol 17(1):17–23.  https://doi.org/10.1038/nsmb.1733 PubMedCrossRefGoogle Scholar
  13. 13.
    Ha M, Kim VN (2014) Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 15(8):509–524.  https://doi.org/10.1038/nrm3838 PubMedCrossRefGoogle Scholar
  14. 14.
    Ruby JG, Jan CH, Bartel DP (2007) Intronic microRNA precursors that bypass Drosha processing. Nature 448(7149):83–86.  https://doi.org/10.1038/nature05983 PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Herrera-Carrillo E, Berkhout B (2017) Dicer-independent processing of small RNA duplexes: mechanistic insights and applications. Nucleic Acids Res 45(18):10369–10379.  https://doi.org/10.1093/nar/gkx779 PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Babiarz JE, Ruby JG, Wang Y, Bartel DP, Blelloch R (2008) Mouse ES cells express endogenous shRNAs, siRNAs, and other Microprocessor-independent, Dicer-dependent small RNAs. Genes Dev 22(20):2773–2785.  https://doi.org/10.1101/gad.1705308 PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Ratnadiwakara M, Mohenska M, Anko ML (2017) Splicing factors as regulators of miRNA biogenesis—links to human disease. Semin Cell Dev Biol.  https://doi.org/10.1016/j.semcdb.2017.10.008 PubMedCrossRefGoogle Scholar
  18. 18.
    Krol J, Loedige I, Filipowicz W (2010) The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet 11(9):597–610.  https://doi.org/10.1038/nrg2843 PubMedCrossRefGoogle Scholar
  19. 19.
    Bartel DP, Chen CZ (2004) Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet 5(5):396–400.  https://doi.org/10.1038/nrg1328 PubMedCrossRefGoogle Scholar
  20. 20.
    Bayraktar R, Van Roosbroeck K, Calin GA (2017) Cell-to-cell communication: microRNAs as hormones. Mol Oncol 11(12):1673–1686.  https://doi.org/10.1002/1878-0261.12144 PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Hohjoh H, Fukushima T (2007) Expression profile analysis of microRNA (miRNA) in mouse central nervous system using a new miRNA detection system that examines hybridization signals at every step of washing. Gene 391(1–2):39–44.  https://doi.org/10.1016/j.gene.2006.11.018 PubMedCrossRefGoogle Scholar
  22. 22.
    Olsen L, Klausen M, Helboe L, Nielsen FC, Werge T (2009) MicroRNAs show mutually exclusive expression patterns in the brain of adult male rats. Plos ONE 4(10):e7225.  https://doi.org/10.1371/journal.pone.0007225 PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Narayan A, Bommakanti A, Patel AA (2015) High-throughput RNA profiling via up-front sample parallelization. Nat Methods 12(4):343–346.  https://doi.org/10.1038/nmeth.3311 PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Liu NK, Wang XF, Lu QB, Xu XM (2009) Altered microRNA expression following traumatic spinal cord injury. Exp Neurol 219(2):424–429.  https://doi.org/10.1016/j.expneurol.2009.06.015 PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Pan YB, Sun ZL, Feng DF (2017) The role of microRNA in traumatic brain injury. Neuroscience 367:189–199.  https://doi.org/10.1016/j.neuroscience.2017.10.046 PubMedCrossRefGoogle Scholar
  26. 26.
    Martinez B, Peplow PV (2017) MicroRNAs as diagnostic markers and therapeutic targets for traumatic brain injury. Neural Regen Res 12(11):1749–1761.  https://doi.org/10.4103/1673-5374.219025 PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Lei P, Li YH, Chen X, Yang SY, Zhang JN (2009) Microarray based analysis of microRNA expression in rat cerebral cortex after traumatic brain injury. Brain Res 1284:191–201. doi: https://doi.org/10.1016/J.Brainres.2009.05.074 PubMedCrossRefGoogle Scholar
  28. 28.
    Hu ZH, Yu DN, Almeida-Suhett C, Tu K, Marini AM, Eiden L, Braga MF, Zhu J, Li Z (2012) Expression of miRNAs and their cooperative regulation of the pathophysiology in traumatic brain injury. Plos ONE 7 (6):e39357.  https://doi.org/10.1371/journal.pone.0039357 PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Sepramaniam S, Tan JR, Tan KS, DeSilva DA, Tavintharan S, Woon FP, Wang CW, Yong FL, Karolina DS, Kaur P, Liu FJ, Lim KY, Armugam A, Jeyaseelan K (2014) Circulating microRNAs as biomarkers of acute stroke. Int J Mol Sci 15(1):1418–1432.  https://doi.org/10.3390/ijms15011418 PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Vijayan M, Reddy PH (2016) Peripheral biomarkers of stroke: focus on circulatory microRNAs. Biochim Biophys Acta 1862(10):1984–1993.  https://doi.org/10.1016/j.bbadis.2016.08.003 PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Henshall DC (2014) MicroRNA and epilepsy: profiling, functions and potential clinical applications. Curr Opin Neurol 27(2):199–205.  https://doi.org/10.1097/WCO.0000000000000079 PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Raoof R, Jimenez-Mateos EM, Bauer S, Tackenberg B, Rosenow F, Lang J, Onugoren MD, Hamer H, Huchtemann T, Kortvelyessy P, Connolly NMC, Pfeiffer S, Prehn JHM, Farrell MA, O’Brien DF, Henshall DC, Mooney C (2017) Cerebrospinal fluid microRNAs are potential biomarkers of temporal lobe epilepsy and status epilepticus. Sci Rep 7(1):3328.  https://doi.org/10.1038/s41598-017-02969-6 PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Martinez B, Peplow PV (2017) MicroRNAs in Parkinson’s disease and emerging therapeutic targets. Neural Regen Res 12(12):1945–1959.  https://doi.org/10.4103/1673-5374.221147 PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Hoss AG, Labadorf A, Beach TG, Latourelle JC, Myers RH (2016) microRNA Profiles in Parkinson’s Disease Prefrontal Cortex. Frontiers in aging neuroscience 8:36.  https://doi.org/10.3389/fnagi.2016.00036 PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Bekris LM, Lutz F, Montine TJ, Yu CE, Tsuang D, Peskind ER, Leverenz JB (2013) MicroRNA in Alzheimer’s disease: an exploratory study in brain, cerebrospinal fluid and plasma. Biomarkers 18(5):455–466.  https://doi.org/10.3109/1354750X.2013.814073 PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Kumar P, Dezso Z, MacKenzie C, Oestreicher J, Agoulnik S, Byrne M, Bernier F, Yanagimachi M, Aoshima K, Oda Y (2013) Circulating miRNA biomarkers for Alzheimer’s disease. Plos ONE 8(7):e69807.  https://doi.org/10.1371/journal.pone.0069807 PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Nieto-Diaz M, Esteban FJ, Reigada D, Munoz-Galdeano T, Yunta M, Caballero-Lopez M, Navarro-Ruiz R, Del Aguila A, Maza RM (2014) MicroRNA dysregulation in spinal cord injury: causes, consequences and therapeutics. Front Cell Neurosci 8:53.  https://doi.org/10.3389/fncel.2014.00053 PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC, Gibson DF, Mitchell PS, Bennett CF, Pogosova-Agadjanyan EL, Stirewalt DL, Tait JF, Tewari M (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci USA 108(12):5003–5008.  https://doi.org/10.1073/pnas.1019055108 PubMedCrossRefGoogle Scholar
  39. 39.
    Ekstrom K, Valadi H, Sjostrand M, Malmhall C, Bossios A, Eldh M, Lotvall J (2012) Characterization of mRNA and microRNA in human mast cell-derived exosomes and their transfer to other mast cells and blood CD34 progenitor cells. J Extracell Vesicles 1:18389.  https://doi.org/10.3402/jev.v1i0.18389 CrossRefGoogle Scholar
  40. 40.
    Blandford SN, Galloway DA, Moore CS (2018) The roles of extracellular vesicle microRNAs in the central nervous system. Glia 66(11):2267–2278.  https://doi.org/10.1002/glia.23445 PubMedCrossRefGoogle Scholar
  41. 41.
    Kanninen KM, Bister N, Koistinaho J, Malm T (2016) Exosomes as new diagnostic tools in CNS diseases. Biochim Biophys Acta 1862(3):403–410.  https://doi.org/10.1016/j.bbadis.2015.09.020 PubMedCrossRefGoogle Scholar
  42. 42.
    Chen JJ, Zhao B, Zhao J, Li S (2017) Potential Roles of Exosomal microRNAs as diagnostic biomarkers and therapeutic application in Alzheimer’s disease. Neural Plast 2017:7027380.  https://doi.org/10.1155/2017/7027380 PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Arvidsson A, Collin T, Kirik D, Kokaia Z, Lindvall O (2002) Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat Med 8(9):963–970.  https://doi.org/10.1038/nm747nm747 PubMedCrossRefGoogle Scholar
  44. 44.
    Kernie SG, Parent JM (2010) Forebrain neurogenesis after focal Ischemic and traumatic brain injury. Neurobiol Dis 37(2):267–274.  https://doi.org/10.1016/j.nbd.2009.11.002 PubMedCrossRefGoogle Scholar
  45. 45.
    Madathil SK, Nelson PT, Saatman KE, Wilfred BR (2011) MicroRNAs in CNS injury: potential roles and therapeutic implications. Bioessays 33(1):21–26.  https://doi.org/10.1002/bies.201000069 PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Liu NK, Xu XM (2011) MicroRNA in central nervous system trauma and degenerative disorders. Physiol Genomics 43(10):571–580.  https://doi.org/10.1152/physiolgenomics.00168.2010 PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Bhalala OG, Srikanth M, Kessler JA (2013) The emerging roles of microRNAs in CNS injuries. Nat Rev Neurol 9(6):328–339.  https://doi.org/10.1038/nrneurol.2013.67 PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Wang C, Ji B, Cheng B, Chen J, Bai B (2014) Neuroprotection of microRNA in neurological disorders (Review). Biomed Rep 2(5):611–619.  https://doi.org/10.3892/br.2014.297 PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Chandran R, Mehta SL, Vemuganti R (2017) Non-coding RNAs and neuroprotection after acute CNS injuries. Neurochem Int 111:12–22.  https://doi.org/10.1016/j.neuint.2017.01.015 PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Sun L, Zhao M, Wang Y, Liu A, Lv M, Li Y, Yang X, Wu Z (2017) Neuroprotective effects of miR-27a against traumatic brain injury via suppressing FoxO3a-mediated neuronal autophagy. Biochem Biophys Res Commun 482(4):1141–1147.  https://doi.org/10.1016/j.bbrc.2016.12.001 PubMedCrossRefGoogle Scholar
  51. 51.
    Zeng LL, He XS, Liu JR, Zheng CB, Wang YT, Yang GY (2016) Lentivirus-mediated overexpression of microRNA-210 improves long-term outcomes after focal cerebral ischemia in mice. CNS Neurosci Ther 22(12):961–969.  https://doi.org/10.1111/cns.12589 PubMedCrossRefGoogle Scholar
  52. 52.
    Sun Y, Gui H, Li Q, Luo ZM, Zheng MJ, Duan JL, Liu X (2013) MicroRNA-124 protects neurons against apoptosis in cerebral ischemic stroke. CNS Neurosci Ther 19(10):813–819.  https://doi.org/10.1111/cns.12142 PubMedCrossRefGoogle Scholar
  53. 53.
    Doeppner TR, Doehring M, Bretschneider E, Zechariah A, Kaltwasser B, Muller B, Koch JC, Bahr M, Hermann DM, Michel U (2013) MicroRNA-124 protects against focal cerebral ischemia via mechanisms involving Usp14-dependent REST degradation. Acta Neuropathol 126(2):251–265.  https://doi.org/10.1007/s00401-013-1142-5 PubMedCrossRefGoogle Scholar
  54. 54.
    Tian YS, Zhong D, Liu QQ, Zhao XL, Sun HX, Jin J, Wang HN, Li GZ (2018) Upregulation of miR-216a exerts neuroprotective effects against ischemic injury through negatively regulating JAK2/STAT3-involved apoptosis and inflammatory pathways. J Neurosurg:1–12.  https://doi.org/10.3171/2017.5.JNS163165
  55. 55.
    Wang Y, Huang J, Ma Y, Tang G, Liu Y, Chen X, Zhang Z, Zeng L, Wang Y, Ouyang YB, Yang GY (2015) MicroRNA-29b is a therapeutic target in cerebral ischemia associated with aquaporin 4. J Cereb Blood Flow Metab 35(12):1977–1984.  https://doi.org/10.1038/jcbfm.2015.156 PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Huang LG, Li JP, Pang XM, Chen CY, Xiang HY, Feng LB, Su SY, Li SH, Zhang L, Liu JL (2015) MicroRNA-29c correlates with Neuroprotection induced by FNS by targeting both Birc2 and Bak1 in rat brain after stroke. CNS Neurosci Ther 21(6):496–503.  https://doi.org/10.1111/cns.12383 PubMedCrossRefGoogle Scholar
  57. 57.
    Mao G, Ren P, Wang G, Yan F, Zhang Y (2017) MicroRNA-128-3p protects mouse against cerebral ischemia through reducing p38alpha mitogen-activated protein kinase activity. J Mol Neurosci 61(2):152–158.  https://doi.org/10.1007/s12031-016-0871-z PubMedCrossRefGoogle Scholar
  58. 58.
    Wang P, Liang X, Lu Y, Zhao X, Liang J (2016) MicroRNA-93 downregulation ameliorates cerebral ischemic injury through the Nrf2/HO-1 defense pathway. Neurochem Res 41(10):2627–2635.  https://doi.org/10.1007/s11064-016-1975-0 PubMedCrossRefGoogle Scholar
  59. 59.
    Harraz MM, Eacker SM, Wang X, Dawson TM, Dawson VL (2012) MicroRNA-223 is neuroprotective by targeting glutamate receptors. Proc Natl Acad Sci USA 109(46):18962–18967.  https://doi.org/10.1073/pnas.1121288109 PubMedCrossRefGoogle Scholar
  60. 60.
    Zhang N, Zhong J, Han S, Li Y, Yin Y, Li J (2016) MicroRNA-378 alleviates cerebral ischemic injury by negatively regulating apoptosis executioner caspase-3. Int J Mol Sci 17 (9):1427.  https://doi.org/10.3390/ijms17091427 CrossRefPubMedCentralGoogle Scholar
  61. 61.
    Xu LJ, Ouyang YB, Xiong X, Stary CM, Giffard RG (2015) Post-stroke treatment with miR-181 antagomir reduces injury and improves long-term behavioral recovery in mice after focal cerebral ischemia. Exp Neurol 264:1–7.  https://doi.org/10.1016/j.expneurol.2014.11.007 PubMedCrossRefGoogle Scholar
  62. 62.
    Peng Z, Li J, Li Y, Yang X, Feng S, Han S, Li J (2013) Downregulation of miR-181b in mouse brain following ischemic stroke induces neuroprotection against ischemic injury through targeting heat shock protein A5 and ubiquitin carboxyl-terminal hydrolase isozyme L1. J Neurosci Res 91(10):1349–1362.  https://doi.org/10.1002/jnr.23255 PubMedCrossRefGoogle Scholar
  63. 63.
    Xing G, Luo Z, Zhong C, Pan X, Xu X (2016) Influence of miR-155 on cell apoptosis in rats with ischemic stroke: role of the Ras homolog enriched in brain (Rheb)/mTOR pathway. Med Sci Monit 22:5141–5153PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Wang P, Zhang N, Liang J, Li J, Han S, Li J (2015) Micro-RNA-30a regulates ischemia-induced cell death by targeting heat shock protein HSPA5 in primary cultured cortical neurons and mouse brain after stroke. J Neurosci Res 93(11):1756–1768.  https://doi.org/10.1002/jnr.23637 PubMedCrossRefGoogle Scholar
  65. 65.
    Sun L, Zhao M, Zhang J, Liu A, Ji W, Li Y, Yang X, Wu Z (2017) MiR-144 promotes beta-amyloid accumulation-induced cognitive impairments by targeting ADAM10 following traumatic brain injury. Oncotarget 8(35):59181–59203.  https://doi.org/10.18632/oncotarget.19469 PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Wang H, Ye Y, Zhu Z, Mo L, Lin C, Wang Q, Wang H, Gong X, He X, Lu G, Lu F, Zhang S (2016) MiR-124 regulates apoptosis and autophagy process in MPTP model of Parkinson’s disease by targeting to Bim. Brain Pathol 26(2):167–176.  https://doi.org/10.1111/bpa.12267 PubMedCrossRefGoogle Scholar
  67. 67.
    Junn E, Lee KW, Jeong BS, Chan TW, Im JY, Mouradian MM (2009) Repression of alpha-synuclein expression and toxicity by microRNA-7. Proc Natl Acad Sci USA 106(31):13052–13057.  https://doi.org/10.1073/pnas.0906277106 PubMedCrossRefGoogle Scholar
  68. 68.
    Ujigo S, Kamei N, Hadoush H, Fujioka Y, Miyaki S, Nakasa T, Tanaka N, Nakanishi K, Eguchi A, Sunagawa T, Ochi M (2014) Administration of microRNA-210 promotes spinal cord regeneration in mice. Spine 39(14):1099–1107.  https://doi.org/10.1097/BRS.0000000000000356 PubMedCrossRefGoogle Scholar
  69. 69.
    Diaz Quiroz JF, Tsai E, Coyle M, Sehm T, Echeverri K (2014) Precise control of miR-125b levels is required to create a regeneration-permissive environment after spinal cord injury: a cross-species comparison between salamander and rat. Dis Model Mech 7(6):601–611.  https://doi.org/10.1242/dmm.014837 PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Jee MK, Jung JS, Choi JI, Jang JA, Kang KS, Im YB, Kang SK (2012) MicroRNA 486 is a potentially novel target for the treatment of spinal cord injury. Brain 135(Pt 4):1237–1252.  https://doi.org/10.1093/brain/aws047 PubMedCrossRefGoogle Scholar
  71. 71.
    Jee MK, Jung JS, Im YB, Jung SJ, Kang SK (2012) Silencing of miR20a is crucial for Ngn1-mediated neuroprotection in injured spinal cord. Hum Gene Ther 23(5):508–520.  https://doi.org/10.1089/hum.2011.121 PubMedCrossRefGoogle Scholar
  72. 72.
    Fawcett J (2009) Molecular control of brain plasticity and repair. Prog Brain Res 175:501–509.  https://doi.org/10.1016/S0079-6123(09)17534-9 PubMedCrossRefGoogle Scholar
  73. 73.
    Carmichael ST, Kathirvelu B, Schweppe CA, Nie EH (2017) Molecular, cellular and functional events in axonal sprouting after stroke. Exp Neurol 287(Pt 3):384–394.  https://doi.org/10.1016/j.expneurol.2016.02.007 PubMedCrossRefGoogle Scholar
  74. 74.
    Forostyak S, Jendelova P, Sykova E (2013) The role of mesenchymal stromal cells in spinal cord injury, regenerative medicine and possible clinical applications. Biochimie 95(12):2257–2270.  https://doi.org/10.1016/j.biochi.2013.08.004 PubMedCrossRefGoogle Scholar
  75. 75.
    Tedeschi A, Omura T, Costigan M (2017) CNS repair and axon regeneration: using genetic variation to determine mechanisms. Exp Neurol 287(Pt 3):409–422.  https://doi.org/10.1016/j.expneurol.2016.05.004 PubMedCrossRefGoogle Scholar
  76. 76.
    Elramah S, Landry M, Favereaux A (2014) MicroRNAs regulate neuronal plasticity and are involved in pain mechanisms. Front Cell Neurosci 8:31.  https://doi.org/10.3389/fncel.2014.00031 PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Ghibaudi M, Boido M, Vercelli A (2017) Functional integration of complex miRNA networks in central and peripheral lesion and axonal regeneration. Prog Neurobiol 158:69–93.  https://doi.org/10.1016/j.pneurobio.2017.07.005 PubMedCrossRefGoogle Scholar
  78. 78.
    Hu Z, Li Z (2017) miRNAs in synapse development and synaptic plasticity. Curr Opin Neurobiol 45:24–31.  https://doi.org/10.1016/j.conb.2017.02.014 PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Wu D, Murashov AK (2013) MicroRNA-431 regulates axon regeneration in mature sensory neurons by targeting the Wnt antagonist Kremen1. Front Mol Neurosci 6:35.  https://doi.org/10.3389/fnmol.2013.00035 PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Hu YW, Jiang JJ, Yan G, Wang RY, Tu GJ (2016) MicroRNA-210 promotes sensory axon regeneration of adult mice in vivo and in vitro. Neurosci Lett 622:61–66.  https://doi.org/10.1016/j.neulet.2016.04.034 PubMedCrossRefGoogle Scholar
  81. 81.
    Wang WM, Lu G, Su XW, Lyu H, Poon WS (2017) MicroRNA-182 regulates neurite outgrowth involving the PTEN/AKT pathway. Front Cell Neurosci 11:96.  https://doi.org/10.3389/fncel.2017.00096 PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Agostini M, Tucci P, Steinert JR, Shalom-Feuerstein R, Rouleau M, Aberdam D, Forsythe ID, Young KW, Ventura A, Concepcion CP, Han YC, Candi E, Knight RA, Mak TW, Melino G (2011) microRNA-34a regulates neurite outgrowth, spinal morphology, and function. Proc Natl Acad Sci USA 108(52):21099–21104.  https://doi.org/10.1073/pnas.1112063108 PubMedCrossRefGoogle Scholar
  83. 83.
    He QQ, Xiong LL, Liu F, He X, Feng GY, Shang FF, Xia QJ, Wang YC, Qiu DL, Luo CZ, Liu J, Wang TH (2016) MicroRNA-127 targeting of mitoNEET inhibits neurite outgrowth, induces cell apoptosis and contributes to physiological dysfunction after spinal cord transection. Sci Rep 6:35205.  https://doi.org/10.1038/srep35205 PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Jiang Y, Zhao S, Ding Y, Nong L, Li H, Gao G, Zhou D, Xu N (2017) MicroRNA21 promotes neurite outgrowth by regulating PDCD4 in a rat model of spinal cord injury. Mol Med Rep 16(3):2522–2528.  https://doi.org/10.3892/mmr.2017.6862 PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    White RE, Giffard RG (2012) MicroRNA-320 induces neurite outgrowth by targeting ARPP-19. Neuroreport 23(10):590–595.  https://doi.org/10.1097/WNR.0b013e3283540394 PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Schneider JA, Bennett DA (2010) Where vascular meets neurodegenerative disease. Stroke 41(10 Suppl):S144–S146.  https://doi.org/10.1161/STROKEAHA.110.598326 PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Sweeney MD, Sagare AP, Zlokovic BV (2018) Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol 14(3):133–150.  https://doi.org/10.1038/nrneurol.2017.188 PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Brouns R, De Deyn PP (2009) The complexity of neurobiological processes in acute ischemic stroke. Clin Neurol Neurosurg 111(6):483–495.  https://doi.org/10.1016/j.clineuro.2009.04.001 PubMedCrossRefGoogle Scholar
  89. 89.
    Nelson E, Gertz SD, Rennels ML, Ducker TB, Blaumanis OR (1977) Spinal cord injury. The role of vascular damage in the pathogenesis of central hemorrhagic necrosis. Arch Neurol 34(6):332–333PubMedCrossRefGoogle Scholar
  90. 90.
    Beck H, Plate KH (2009) Angiogenesis after cerebral ischemia. Acta Neuropathol 117(5):481–496.  https://doi.org/10.1007/s00401-009-0483-6 PubMedCrossRefGoogle Scholar
  91. 91.
    Ng MT, Stammers AT, Kwon BK (2011) Vascular disruption and the role of angiogenic proteins after spinal cord injury. Transl Stroke Res 2(4):474–491.  https://doi.org/10.1007/s12975-011-0109-x PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Poliseno L, Tuccoli A, Mariani L, Evangelista M, Citti L, Woods K, Mercatanti A, Hammond S, Rainaldi G (2006) MicroRNAs modulate the angiogenic properties of HUVECs. Blood 108(9):3068–3071.  https://doi.org/10.1182/blood-2006-01-012369 PubMedCrossRefGoogle Scholar
  93. 93.
    Kuehbacher A, Urbich C, Zeiher AM, Dimmeler S (2007) Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ Res 101(1):59–68.  https://doi.org/10.1161/CIRCRESAHA.107.153916 PubMedCrossRefGoogle Scholar
  94. 94.
    Holderfield MT, Hughes CCW (2008) Crosstalk between vascular endothelial growth factor, notch, and transforming growth factor-beta in vascular morphogenesis. Circ Res 102(6):637–652.  https://doi.org/10.1161/Circresaha.107.167171 PubMedCrossRefGoogle Scholar
  95. 95.
    Bobik A (2006) Transforming growth factor-betas and vascular disorders. Arterioscler Thromb Vasc Biol 26(8):1712–1720.  https://doi.org/10.1161/01.ATV.0000225287.20034.2c PubMedCrossRefGoogle Scholar
  96. 96.
    Kuehbacher A, Urbich C, Dimmeler S (2008) Targeting microRNA expression to regulate angiogenesis. Trends Pharmacol Sci 29(1):12–15.  https://doi.org/10.1016/j.tips.2007.10.014 PubMedCrossRefGoogle Scholar
  97. 97.
    Yin KJ, Hamblin M, Chen YE (2015) Angiogenesis-regulating microRNAs and Ischemic Stroke. Curr Vasc Pharmacol 13(3):352–365PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Landskroner-Eiger S, Moneke I, Sessa WC (2013) miRNAs as modulators of angiogenesis. Cold Spring Harb Perspect Med 3(2):a006643.  https://doi.org/10.1101/cshperspect.a006643 PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Lopez-Ramirez MA, Reijerkerk A, de Vries HE, Romero IA (2016) Regulation of brain endothelial barrier function by microRNAs in health and neuroinflammation. FASEB J 30(8):2662–2672.  https://doi.org/10.1096/fj.201600435RR PubMedCrossRefGoogle Scholar
  100. 100.
    Yin KJ, Hamblin M, Chen YE (2014) Non-coding RNAs in cerebral endothelial pathophysiology: emerging roles in stroke. Neurochem Int 77:9–16.  https://doi.org/10.1016/j.neuint.2014.03.013 PubMedCrossRefGoogle Scholar
  101. 101.
    Cichon C, Sabharwal H, Ruter C, Schmidt MA (2014) MicroRNAs regulate tight junction proteins and modulate epithelial/endothelial barrier functions. Tissue Barriers 2(4):e944446.  https://doi.org/10.4161/21688362.2014.944446 PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Li XQ, Fang B, Tan WF, Wang ZL, Sun XJ, Zhang ZL, Ma H (2016) miR-320a affects spinal cord edema through negatively regulating aquaporin-1 of blood-spinal cord barrier during bimodal stage after ischemia reperfusion injury in rats. BMC Neurosci 17:10.  https://doi.org/10.1186/s12868-016-0243-1 PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Costa A, Afonso J, Osorio C, Gomes AL, Caiado F, Valente J, Aguiar SI, Pinto F, Ramirez M, Dias S (2013) miR-363-5p regulates endothelial cell properties and their communication with hematopoietic precursor cells. J Hematol Oncol 6(1):87.  https://doi.org/10.1186/1756-8722-6-87 PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    He QW, Li Q, Jin HJ, Zhi F, Suraj B, Zhu YY, Xia YP, Mao L, Chen XL, Hu B (2016) MiR-150 regulates poststroke cerebral angiogenesis via vascular endothelial growth factor in rats. CNS Neurosci Ther 22(6):507–517.  https://doi.org/10.1111/cns.12525 PubMedCrossRefGoogle Scholar
  105. 105.
    Lopez-Ramirez MA, Wu D, Pryce G, Simpson JE, Reijerkerk A, King-Robson J, Kay O, de Vries HE, Hirst MC, Sharrack B, Baker D, Male DK, Michael GJ, Romero IA (2014) MicroRNA-155 negatively affects blood-brain barrier function during neuroinflammation. FASEB J 28(6):2551–2565.  https://doi.org/10.1096/fj.13-248880 PubMedCrossRefGoogle Scholar
  106. 106.
    Caballero-Garrido E, Pena-Philippides JC, Lordkipanidze T, Bragin D, Yang Y, Erhardt EB, Roitbak T (2015) In vivo inhibition of miR-155 promotes recovery after experimental mouse stroke. J Neurosci 35(36):12446–12464.  https://doi.org/10.1523/JNEUROSCI.1641-15.2015 PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Cardoso AL, Guedes JR, de Lima MC (2016) Role of microRNAs in the regulation of innate immune cells under neuroinflammatory conditions. Curr Opin Pharmacol 26:1–9.  https://doi.org/10.1016/j.coph.2015.09.001 PubMedCrossRefGoogle Scholar
  108. 108.
    Nilupul Perera M, Ma HK, Arakawa S, Howells DW, Markus R, Rowe CC, Donnan GA (2006) Inflammation following stroke. J Clin Neurosci 13(1):1–8.  https://doi.org/10.1016/j.jocn.2005.07.005 PubMedCrossRefGoogle Scholar
  109. 109.
    Lucas SM, Rothwell NJ, Gibson RM (2006) The role of inflammation in CNS injury and disease. Br J Pharmacol 147(Suppl 1):S232–S240.  https://doi.org/10.1038/sj.bjp.0706400 PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Lambertsen KL, Biber K, Finsen B (2012) Inflammatory cytokines in experimental and human stroke. J Cereb Blood Flow Metab 32(9):1677–1698.  https://doi.org/10.1038/jcbfm.2012.88 PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Hausmann ON (2003) Post-traumatic inflammation following spinal cord injury. Spinal Cord 41(7):369–378.  https://doi.org/10.1038/sj.sc.3101483 PubMedCrossRefGoogle Scholar
  112. 112.
    Su W, Aloi MS, Garden GA (2016) MicroRNAs mediating CNS inflammation: small regulators with powerful potential. Brain Behav Immun 52:1–8.  https://doi.org/10.1016/j.bbi.2015.07.003 PubMedCrossRefGoogle Scholar
  113. 113.
    Gaudet AD, Fonken LK, Watkins LR, Nelson RJ, Popovich PG (2017) MicroRNAs: roles in regulating neuroinflammation. Neuroscientist.  https://doi.org/10.1177/1073858417721150 PubMedCrossRefGoogle Scholar
  114. 114.
    Thounaojam MC, Kaushik DK, Basu A (2013) MicroRNAs in the brain: it’s regulatory role in neuroinflammation. Mol Neurobiol 47(3):1034–1044.  https://doi.org/10.1007/s12035-013-8400-3 PubMedCrossRefGoogle Scholar
  115. 115.
    Jadhav SP, Kamath SP, Choolani M, Lu J, Dheen ST (2014) microRNA-200b modulates microglia-mediated neuroinflammation via the cJun/MAPK pathway. J Neurochem 130(3):388–401.  https://doi.org/10.1111/jnc.12731 PubMedCrossRefGoogle Scholar
  116. 116.
    Wang X, Chen S, Ni J, Cheng J, Jia J, Zhen X (2018) miRNA-3473b contributes to neuroinflammation following cerebral ischemia. Cell Death Dis 9(1):11.  https://doi.org/10.1038/s41419-017-0014-7 PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Lv J, Zeng Y, Qian Y, Dong J, Zhang Z, Zhang J (2018) MicroRNA let-7c-5p improves neurological outcomes in a murine model of traumatic brain injury by suppressing neuroinflammation and regulating microglial activation. Brain Res 1685:91–104.  https://doi.org/10.1016/j.brainres.2018.01.032 PubMedCrossRefGoogle Scholar
  118. 118.
    Lv YN, Ou-Yang AJ, Fu LS (2017) MicroRNA-27a negatively modulates the inflammatory response in lipopolysaccharide-stimulated microglia by targeting TLR4 and IRAK4. Cell Mol Neurobiol 37(2):195–210.  https://doi.org/10.1007/s10571-016-0361-4 PubMedCrossRefGoogle Scholar
  119. 119.
    Yuan B, Shen H, Lin L, Su T, Zhong L, Yang Z (2015) MicroRNA367 negatively regulates the inflammatory response of microglia by targeting IRAK4 in intracerebral hemorrhage. J Neuroinflammation 12:206.  https://doi.org/10.1186/s12974-015-0424-3 PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Murugaiyan G, da Cunha AP, Ajay AK, Joller N, Garo LP, Kumaradevan S, Yosef N, Vaidya VS, Weiner HL (2015) MicroRNA-21 promotes Th17 differentiation and mediates experimental autoimmune encephalomyelitis. J Clin Invest 125(3):1069–1080.  https://doi.org/10.1172/JCI74347 PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Johansson CB, Momma S, Clarke DL, Risling M, Lendahl U, Frisen J (1999) Identification of a neural stem cell in the adult mammalian central nervous system. Cell 96(1):25–34PubMedCrossRefGoogle Scholar
  122. 122.
    Dietrich J, Kempermann G (2006) Role of endogenous neural stem cells in neurological disease and brain repair. Adv Exp Med Biol 557:191–220.  https://doi.org/10.1007/0-387-30128-3_12 PubMedCrossRefGoogle Scholar
  123. 123.
    Meletis K, Barnabe-Heider F, Carlen M, Evergren E, Tomilin N, Shupliakov O, Frisen J (2008) Spinal cord injury reveals multilineage differentiation of ependymal cells. PLoS Biol 6(7):e182.  https://doi.org/10.1371/journal.pbio.0060182 PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Rice AC, Khaldi A, Harvey HB, Salman NJ, White F, Fillmore H, Bullock MR (2003) Proliferation and neuronal differentiation of mitotically active cells following traumatic brain injury. Exp Neurol 183(2):406–417.PubMedCrossRefGoogle Scholar
  125. 125.
    Richardson RM, Singh A, Sun D, Fillmore HL, Dietrich DW 3rd, Bullock MR (2010) Stem cell biology in traumatic brain injury: effects of injury and strategies for repair. J Neurosurg 112(5):1125–1138.  https://doi.org/10.3171/2009.4.JNS081087 PubMedCrossRefGoogle Scholar
  126. 126.
    Sun D, Colello RJ, Daugherty WP, Kwon TH, McGinn MJ, Harvey HB, Bullock MR (2005) Cell proliferation and neuronal differentiation in the dentate gyrus in juvenile and adult rats following traumatic brain injury. J Neurotrauma 22(1):95–105.  https://doi.org/10.1089/neu.2005.22.95 PubMedCrossRefGoogle Scholar
  127. 127.
    Darian-Smith C (2009) Synaptic plasticity, neurogenesis, and functional recovery after spinal cord injury. Neuroscientist 15(2):149–165.  https://doi.org/10.1177/1073858408331372 PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Wallace MC, Tator CH, Lewis AJ (1987) Chronic regenerative changes in the spinal cord after cord compression injury in rats. Surg Neurol 27(3):209–219PubMedCrossRefGoogle Scholar
  129. 129.
    Beattie MS, Bresnahan JC, Komon J, Tovar CA, Van Meter M, Anderson DK, Faden AI, Hsu CY, Noble LJ, Salzman S, Young W (1997) Endogenous repair after spinal cord contusion injuries in the rat. Exp Neurol 148(2):453–463.  https://doi.org/10.1006/exnr.1997.6695 PubMedCrossRefGoogle Scholar
  130. 130.
    Lukovic D, Stojkovic M, Moreno-Manzano V, Jendelova P, Sykova E, Bhattacharya SS, Erceg S (2015) Concise review: reactive astrocytes and stem cells in spinal cord injury: good guys or bad guys? Stem Cells 33(4):1036–1041.  https://doi.org/10.1002/stem.1959 PubMedCrossRefGoogle Scholar
  131. 131.
    Liu C, Zhao X (2009) MicroRNAs in adult and embryonic neurogenesis. Neuromol Med 11(3):141–152.  https://doi.org/10.1007/s12017-009-8077-y CrossRefGoogle Scholar
  132. 132.
    Shi MA, Shi GP (2010) Intracellular delivery strategies for microRNAs and potential therapies for human cardiovascular diseases. Sci Signal 3(146):pe40.  https://doi.org/10.1126/scisignal.3146pe40 PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Mathieu J, Ruohola-Baker H (2013) Regulation of stem cell populations by microRNAs. Adv Exp Med Biol 786:329–351.  https://doi.org/10.1007/978-94-007-6621-1_18 PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Bielefeld P, Mooney C, Henshall DC, Fitzsimons CP (2017) miRNA-Mediated Regulation of Adult Hippocampal Neurogenesis; Implications for Epilepsy. Brain Plast 3(1):43–59.  https://doi.org/10.3233/BPL-160036 PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Fan Z, Lu M, Qiao C, Zhou Y, Ding JH, Hu G (2016) MicroRNA-7 enhances subventricular zone neurogenesis by inhibiting NLRP3/Caspase-1 axis in adult neural stem cells. Mol Neurobiol 53(10):7057–7069.  https://doi.org/10.1007/s12035-015-9620-5 PubMedCrossRefGoogle Scholar
  136. 136.
    Liu XS, Chopp M, Zhang RL, Tao T, Wang XL, Kassis H, Hozeska-Solgot A, Zhang L, Chen C, Zhang ZG (2011) MicroRNA profiling in subventricular zone after stroke: MiR-124a regulates proliferation of neural progenitor cells through Notch signaling pathway. Plos ONE 6(8):e23461.  https://doi.org/10.1371/journal.pone.0023461 PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Liu XS, Chopp M, Wang XL, Zhang L, Hozeska-Solgot A, Tang T, Kassis H, Zhang RL, Chen C, Xu J, Zhang ZG (2013) MicroRNA-17-92 cluster mediates the proliferation and survival of neural progenitor cells after stroke. J Biol Chem 288(18):12478–12488.  https://doi.org/10.1074/jbc.M112.449025 PubMedCrossRefPubMedCentralGoogle Scholar
  138. 138.
    Suzuki SO, Goldman JE (2003) Multiple cell populations in the early postnatal subventricular zone take distinct migratory pathways: a dynamic study of glial and neuronal progenitor migration. J Neurosci 23(10):4240–4250PubMedCrossRefGoogle Scholar
  139. 139.
    Zhang ZG, Chopp M (2009) Neurorestorative therapies for stroke: underlying mechanisms and translation to the clinic. Lancet Neurol 8(5):491–500.  https://doi.org/10.1016/S1474-4422(09)70061-4 PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Zhang R, Chopp M, Zhang ZG (2013) Oligodendrogenesis after cerebral ischemia. Front Cell Neurosci 7:201.  https://doi.org/10.3389/fncel.2013.00201 PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    El Waly B, Macchi M, Cayre M, Durbec P (2014) Oligodendrogenesis in the normal and pathological central nervous system. Front Neurosci 8:145.  https://doi.org/10.3389/fnins.2014.00145 PubMedCrossRefPubMedCentralGoogle Scholar
  142. 142.
    Flygt J, Djupsjo A, Lenne F, Marklund N (2013) Myelin loss and oligodendrocyte pathology in white matter tracts following traumatic brain injury in the rat. Eur J Neurosci 38(1):2153–2165.  https://doi.org/10.1111/ejn.12179 PubMedCrossRefGoogle Scholar
  143. 143.
    Behrendt G, Baer K, Buffo A, Curtis MA, Faull RL, Rees MI, Gotz M, Dimou L (2013) Dynamic changes in myelin aberrations and oligodendrocyte generation in chronic amyloidosis in mice and men. Glia 61(2):273–286.  https://doi.org/10.1002/glia.22432 PubMedCrossRefGoogle Scholar
  144. 144.
    Menn B, Garcia-Verdugo JM, Yaschine C, Gonzalez-Perez O, Rowitch D, Alvarez-Buylla A (2006) Origin of oligodendrocytes in the subventricular zone of the adult brain. J Neurosci 26(30):7907–7918.  https://doi.org/10.1523/JNEUROSCI.1299-06.2006 PubMedCrossRefGoogle Scholar
  145. 145.
    Serwanski DR, Rasmussen AL, Brunquell CB, Perkins SS, Nishiyama A (2018) Sequential contribution of parenchymal and neural stem cell-derived oligodendrocyte precursor cells toward remyelination. Neuroglia 1(1):91–105.  https://doi.org/10.3390/neuroglia1010008 PubMedCrossRefPubMedCentralGoogle Scholar
  146. 146.
    Zhang RL, Chopp M, Roberts C, Jia L, Wei M, Lu M, Wang X, Pourabdollah S, Zhang ZG (2011) Ascl1 lineage cells contribute to ischemia-induced neurogenesis and oligodendrogenesis. J Cereb Blood Flow Metab 31(2):614–625.  https://doi.org/10.1038/jcbfm.2010.134 PubMedCrossRefGoogle Scholar
  147. 147.
    Flygt J, Gumucio A, Ingelsson M, Skoglund K, Holm J, Alafuzoff I, Marklund N (2016) Human traumatic brain injury results in oligodendrocyte death and increases the number of oligodendrocyte progenitor cells. J Neuropathol Exp Neurol 75(6):503–515.  https://doi.org/10.1093/jnen/nlw025 PubMedCrossRefGoogle Scholar
  148. 148.
    Flygt J, Clausen F, Marklund N (2017) Diffuse traumatic brain injury in the mouse induces a transient proliferation of oligodendrocyte progenitor cells in injured white matter tracts. Restor Neurol Neurosci 35(2):251–263.  https://doi.org/10.3233/RNN-160675 PubMedCrossRefGoogle Scholar
  149. 149.
    Tripathi R, McTigue DM (2007) Prominent oligodendrocyte genesis along the border of spinal contusion lesions. Glia 55(7):698–711.  https://doi.org/10.1002/glia.20491 PubMedCrossRefGoogle Scholar
  150. 150.
    Li N, Leung GK (2015) Oligodendrocyte precursor cells in spinal cord injury: a review and update. Biomed Res Int.  https://doi.org/10.1155/2015/235195 CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Barca-Mayo O, Lu QR (2012) Fine-tuning oligodendrocyte development by microRNAs. Front Neurosci 6:13.  https://doi.org/10.3389/fnins.2012.00013 PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Galloway DA, Moore CS (2016) miRNAs as emerging regulators of oligodendrocyte development and differentiation. Front Cell Dev Biol 4:59.  https://doi.org/10.3389/fcell.2016.00059 PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Liu XS, Chopp M, Pan WL, Wang XL, Fan BY, Zhang Y, Kassis H, Zhang RL, Zhang XM, Zhang ZG (2017) MicroRNA-146a promotes oligodendrogenesis in stroke. Mol Neurobiol 54(1):227–237.  https://doi.org/10.1007/s12035-015-9655-7 PubMedCrossRefGoogle Scholar
  154. 154.
    Wang H, Moyano AL, Ma Z, Deng Y, Lin Y, Zhao C, Zhang L, Jiang M, He X, Ma Z, Lu F, Xin M, Zhou W, Yoon SO, Bongarzone ER, Lu QR (2017) miR-219 cooperates with miR-338 in myelination and promotes myelin repair in the CNS. Dev Cell 40(6):566–582.  https://doi.org/10.1016/j.devcel.2017.03.001 PubMedCrossRefPubMedCentralGoogle Scholar
  155. 155.
    Lin ST, Huang Y, Zhang L, Heng MY, Ptacek LJ, Fu YH (2013) MicroRNA-23a promotes myelination in the central nervous system. Proc Natl Acad Sci USA 110(43):17468–17473.  https://doi.org/10.1073/pnas.1317182110 PubMedCrossRefGoogle Scholar
  156. 156.
    Faraoni I, Antonetti FR, Cardone J, Bonmassar E (2009) miR-155 gene: a typical multifunctional microRNA. Biochim Biophys Acta 1792(6):497–505.  https://doi.org/10.1016/j.bbadis.2009.02.013 PubMedCrossRefGoogle Scholar
  157. 157.
    O’Connell RM, Kahn D, Gibson WS, Round JL, Scholz RL, Chaudhuri AA, Kahn ME, Rao DS, Baltimore D (2010) MicroRNA-155 promotes autoimmune inflammation by enhancing inflammatory T cell development. Immunity 33(4):607–619.  https://doi.org/10.1016/j.immuni.2010.09.009 PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Elton TS, Selemon H, Elton SM, Parinandi NL (2013) Regulation of the MIR155 host gene in physiological and pathological processes. Gene 532(1):1–12.  https://doi.org/10.1016/j.gene.2012.12.009 PubMedCrossRefGoogle Scholar
  159. 159.
    Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, Lin C, Socci ND, Hermida L, Fulci V, Chiaretti S, Foa R, Schliwka J, Fuchs U, Novosel A, Muller RU, Schermer B, Bissels U, Inman J, Phan Q, Chien M, Weir DB, Choksi R, De Vita G, Frezzetti D, Trompeter HI, Hornung V, Teng G, Hartmann G, Palkovits M, Di Lauro R, Wernet P, Macino G, Rogler CE, Nagle JW, Ju J, Papavasiliou FN, Benzing T, Lichter P, Tam W, Brownstein MJ, Bosio A, Borkhardt A, Russo JJ, Sander C, Zavolan M, Tuschl T (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129(7):1401–1414.  https://doi.org/10.1016/j.cell.2007.04.040 PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Sun HX, Zeng DY, Li RT, Pang RP, Yang H, Hu YL, Zhang Q, Jiang Y, Huang LY, Tang YB, Yan GJ, Zhou JG (2012) Essential role of microRNA-155 in regulating endothelium-dependent vasorelaxation by targeting endothelial nitric oxide synthase. Hypertension 60(6):1407–1414.  https://doi.org/10.1161/HYPERTENSIONAHA.112.197301 PubMedCrossRefGoogle Scholar
  161. 161.
    Butovsky O, Jedrychowski MP, Cialic R, Krasemann S, Murugaiyan G, Fanek Z, Greco DJ, Wu PM, Doykan CE, Kiner O, Lawson RJ, Frosch MP, Pochet N, Fatimy RE, Krichevsky AM, Gygi SP, Lassmann H, Berry J, Cudkowicz ME, Weiner HL (2015) Targeting miR-155 restores abnormal microglia and attenuates disease in SOD1 mice. Ann Neurol 77(1):75–99.  https://doi.org/10.1002/ana.24304 PubMedCrossRefGoogle Scholar
  162. 162.
    Tarassishin L, Loudig O, Bauman A, Shafit-Zagardo B, Suh HS, Lee SC (2011) Interferon regulatory factor 3 inhibits astrocyte inflammatory gene expression through suppression of the proinflammatory miR-155 and miR-155*. Glia 59(12):1911–1922.  https://doi.org/10.1002/glia.21233 PubMedCrossRefPubMedCentralGoogle Scholar
  163. 163.
    Weber M, Kim S, Patterson N, Rooney K, Searles CD (2014) MiRNA-155 targets myosin light chain kinase and modulates actin cytoskeleton organization in endothelial cells. Am J Physiol Heart Circ Physiol 306(8):H1192–H1203.  https://doi.org/10.1152/ajpheart.00521.2013 PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Murugaiyan G, Beynon V, Mittal A, Joller N, Weiner HL (2011) Silencing microRNA-155 ameliorates experimental autoimmune encephalomyelitis. J Immunol 187(5):2213–2221.  https://doi.org/10.4049/jimmunol.1003952 PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Kurowska-Stolarska M, Alivernini S, Ballantine LE, Asquith DL, Millar NL, Gilchrist DS, Reilly J, Ierna M, Fraser AR, Stolarski B, McSharry C, Hueber AJ, Baxter D, Hunter J, Gay S, Liew FY, McInnes IB (2011) MicroRNA-155 as a proinflammatory regulator in clinical and experimental arthritis. Proc Natl Acad Sci USA 108(27):11193–11198.  https://doi.org/10.1073/pnas.1019536108 PubMedCrossRefGoogle Scholar
  166. 166.
    van Solingen C, Araldi E, Chamorro-Jorganes A, Fernandez-Hernando C, Suarez Y (2014) Improved repair of dermal wounds in mice lacking microRNA-155. J Cell Mol Med.  https://doi.org/10.1111/jcmm.12255 PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Perera MN, Ma HK, Arakawa S, Howells DW, Markus R, Rowe CC, Donnan GA (2006) Inflammation following stroke. J Clin Neurosci 13(1):1–8. doi: https://doi.org/10.1016/J.Jocn.2005.07.005 CrossRefGoogle Scholar
  168. 168.
    Xiong X, Barreto GE, Xu L, Ouyang YB, Xie X, Giffard RG (2011) Increased brain injury and worsened neurological outcome in interleukin-4 knockout mice after transient focal cerebral ischemia. Stroke 42(7):2026–2032.  https://doi.org/10.1161/STROKEAHA.110.593772 PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Koval ED, Shaner C, Zhang P, du Maine X, Fischer K, Tay J, Chau BN, Wu GF, Miller TM (2013) Method for widespread microRNA-155 inhibition prolongs survival in ALS-model mice. Human molecular genetics 22(20):4127–4135.  https://doi.org/10.1093/hmg/ddt261 PubMedCrossRefPubMedCentralGoogle Scholar
  170. 170.
    Ashhab MU, Omran A, Kong H, Gan N, He F, Peng J, Yin F (2013) Expressions of tumor necrosis factor alpha and microRNA-155 in immature rat model of status epilepticus and children with mesial temporal lobe epilepsy. J Mol Neurosci 51(3):950–958.  https://doi.org/10.1007/s12031-013-0013-9 PubMedCrossRefGoogle Scholar
  171. 171.
    Zhang J, Cheng Y, Cui W, Li M, Li B, Guo L (2014) MicroRNA-155 modulates Th1 and Th17 cell differentiation and is associated with multiple sclerosis and experimental autoimmune encephalomyelitis. J Neuroimmunol 266(1–2):56–63.  https://doi.org/10.1016/j.jneuroim.2013.09.019 PubMedCrossRefGoogle Scholar
  172. 172.
    Zhou J, Wang W, Gao Z, Peng X, Chen X, Chen W, Xu W, Xu H, Lin MC, Jiang S (2013) MicroRNA-155 promotes glioma cell proliferation via the regulation of MXI1. Plos ONE 8(12):e83055.  https://doi.org/10.1371/journal.pone.0083055 PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Yan Z, Che S, Wang J, Jiao Y, Wang C, Meng Q (2015) miR-155 contributes to the progression of glioma by enhancing Wnt/beta-catenin pathway. Tumour Biol 36(7):5323–5331.  https://doi.org/10.1007/s13277-015-3193-9 PubMedCrossRefGoogle Scholar
  174. 174.
    Roitbak T, Bragina O, Padilla JL, Pickett GG (2011) The role of microRNAs in neural stem cell-supported endothelial morphogenesis. Vasc Cell 3:25.  https://doi.org/10.1186/2045-824X-3-25 PubMedCrossRefPubMedCentralGoogle Scholar
  175. 175.
    Pena-Philippides JC, Caballero-Garrido E, Lordkipanidze T, Roitbak T (2016) In vivo inhibition of miR-155 significantly alters post-stroke inflammatory response. J Neuroinflammation 13(1):287.  https://doi.org/10.1186/s12974-016-0753-x PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    Mashima R (2015) Physiological roles of miR-155. Immunology 145(3):323–333.  https://doi.org/10.1111/imm.12468 PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    Pena-Philippides JC, Gardiner AS, Caballero-Garrido E, Pan R, Zhu Y, Roitbak T (2018) Inhibition of miR-155 supports endothelial tight junction integrity following oxygen-glucose deprivation. J Am Heart Assoc 7(13):e009244.  https://doi.org/10.1161/JAHA.118.009244 PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Sun P, Liu DZ, Jickling GC, Sharp FR, Yin KJ (2018) MicroRNA-based therapeutics in central nervous system injuries. J Cereb Blood Flow Metab.  https://doi.org/10.1177/0271678X18773871 CrossRefPubMedPubMedCentralGoogle Scholar
  179. 179.
    Martins M, Rosa A, Guedes LC, Fonseca BV, Gotovac K, Violante S, Mestre T, Coelho M, Rosa MM, Martin ER, Vance JM, Outeiro TF, Wang L, Borovecki F, Ferreira JJ, Oliveira SA (2011) Convergence of miRNA expression profiling, alpha-synuclein interacton and GWAS in Parkinson’s disease. Plos ONE 6(10):e25443.  https://doi.org/10.1371/journal.pone.0025443 PubMedCrossRefPubMedCentralGoogle Scholar
  180. 180.
    Kim W, Lee Y, McKenna ND, Yi M, Simunovic F, Wang Y, Kong B, Rooney RJ, Seo H, Stephens RM, Sonntag KC (2014) miR-126 contributes to Parkinson’s disease by dysregulating the insulin-like growth factor/phosphoinositide 3-kinase signaling. Neurobiol Aging 35(7):1712–1721.  https://doi.org/10.1016/j.neurobiolaging.2014.01.021 PubMedCrossRefPubMedCentralGoogle Scholar
  181. 181.
    Dewdney B, Trollope A, Moxon J, Thomas Manapurathe D, Biros E, Golledge J (2018) Circulating microRNAs as biomarkers for acute ischemic stroke: a systematic review. J Stroke Cerebrovasc Dis 27(3):522–530.  https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.09.058 PubMedCrossRefGoogle Scholar
  182. 182.
    Nunez-Iglesias J, Liu CC, Morgan TE, Finch CE, Zhou XJ (2010) Joint genome-wide profiling of miRNA and mRNA expression in Alzheimer’s disease cortex reveals altered miRNA regulation. Plos ONE 5(2):e8898.  https://doi.org/10.1371/journal.pone.0008898 PubMedCrossRefPubMedCentralGoogle Scholar
  183. 183.
    Hachisuka S, Kamei N, Ujigo S, Miyaki S, Yasunaga Y, Ochi M (2014) Circulating microRNAs as biomarkers for evaluating the severity of acute spinal cord injury. Spinal Cord 52(8):596–600.  https://doi.org/10.1038/sc.2014.86 PubMedCrossRefGoogle Scholar
  184. 184.
    Wang Y, Ye F, Huang C, Xue F, Li Y, Gao S, Qiu Z, Li S, Chen Q, Zhou H, Song Y, Huang W, Tan W, Wang Z (2018) Bioinformatic analysis of potential biomarkers for spinal cord-injured patients with intractable neuropathic pain. Clin J Pain 34(9):825–830.  https://doi.org/10.1097/AJP.0000000000000608 PubMedCrossRefPubMedCentralGoogle Scholar
  185. 185.
    Bhomia M, Balakathiresan NS, Wang KK, Papa L, Maheshwari RK (2016) A panel of serum MiRNA biomarkers for the diagnosis of severe to mild traumatic brain injury in humans. Sci Rep 6:28148.  https://doi.org/10.1038/srep28148 PubMedCrossRefPubMedCentralGoogle Scholar
  186. 186.
    Martirosyan NL, Carotenuto A, Patel AA, Kalani MY, Yagmurlu K, Lemole GM Jr, Preul MC, Theodore N (2016) The role of microRNA markers in the diagnosis, treatment, and outcome prediction of spinal cord injury. Front Surg 3:56.  https://doi.org/10.3389/fsurg.2016.00056 PubMedCrossRefPubMedCentralGoogle Scholar
  187. 187.
    Di Pietro V, Yakoub KM, Scarpa U, Di Pietro C, Belli A (2018) MicroRNA signature of traumatic brain injury: from the biomarker discovery to the point-of-care. Front Neurol 9:429.  https://doi.org/10.3389/fneur.2018.00429 PubMedCrossRefPubMedCentralGoogle Scholar
  188. 188.
    Chakraborty C, Sharma AR, Sharma G, Doss CGP, Lee SS (2017) Therapeutic miRNA and siRNA: moving from bench to clinic as next generation medicine. Mol Ther Nucleic Acids 8:132–143.  https://doi.org/10.1016/j.omtn.2017.06.005 PubMedCrossRefPubMedCentralGoogle Scholar
  189. 189.
    van der Ree MH, van der Meer AJ, van Nuenen AC, de Bruijne J, Ottosen S, Janssen HL, Kootstra NA, Reesink HW (2016) Miravirsen dosing in chronic hepatitis C patients results in decreased microRNA-122 levels without affecting other microRNAs in plasma. Aliment Pharmacol Ther 43(1):102–113.  https://doi.org/10.1111/apt.13432 PubMedCrossRefGoogle Scholar
  190. 190.
    Beg MS, Brenner AJ, Sachdev J, Borad M, Kang YK, Stoudemire J, Smith S, Bader AG, Kim S, Hong DS (2017) Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Invest New Drugs 35(2):180–188.  https://doi.org/10.1007/s10637-016-0407-y PubMedCrossRefGoogle Scholar
  191. 191.
    Khoshnam SE, Winlow W, Farbood Y, Moghaddam HF, Farzaneh M (2017) Emerging roles of microRNAs in ischemic stroke: as possible therapeutic agents. J Stroke 19(2):166–187.  https://doi.org/10.5853/jos.2016.01368 PubMedCrossRefPubMedCentralGoogle Scholar
  192. 192.
    Chopp M, Zhang ZG (2015) Emerging potential of exosomes and noncoding microRNAs for the treatment of neurological injury/diseases. Expert Opin Emerg Drugs 20(4):523–526.  https://doi.org/10.1517/14728214.2015.1061993 PubMedCrossRefPubMedCentralGoogle Scholar
  193. 193.
    Xiong Y, Mahmood A, Chopp M (2017) Emerging potential of exosomes for treatment of traumatic brain injury. Neural Regen Res 12(1):19–22.  https://doi.org/10.4103/1673-5374.198966 PubMedCrossRefPubMedCentralGoogle Scholar
  194. 194.
    Zhang ZG, Buller B, Chopp M (2019) Exosomes—beyond stem cells for restorative therapy in stroke and neurological injury. Nat Rev Neurol.  https://doi.org/10.1038/s41582-018-0126-4 PubMedCrossRefGoogle Scholar
  195. 195.
    Xin H, Li Y, Cui Y, Yang JJ, Zhang ZG, Chopp M (2013) Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J Cereb Blood Flow Metab 33(11):1711–1715.  https://doi.org/10.1038/jcbfm.2013.152 PubMedCrossRefPubMedCentralGoogle Scholar
  196. 196.
    Xin H, Li Y, Chopp M (2014) Exosomes/miRNAs as mediating cell-based therapy of stroke. Front Cell Neurosci 8:377.  https://doi.org/10.3389/fncel.2014.00377 PubMedCrossRefPubMedCentralGoogle Scholar
  197. 197.
    Zhang Y, Chopp M, Liu XS, Katakowski M, Wang X, Tian X, Wu D, Zhang ZG (2017) Exosomes derived from mesenchymal stromal cells promote axonal growth of cortical neurons. Mol Neurobiol 54(4):2659–2673.  https://doi.org/10.1007/s12035-016-9851-0 PubMedCrossRefGoogle Scholar
  198. 198.
    Wen Y, Zhang X, Dong L, Zhao J, Zhang C, Zhu C (2015) Acetylbritannilactone modulates MicroRNA-155-mediated inflammatory response in ischemic cerebral tissues. Mol Med 21:197–209.  https://doi.org/10.2119/molmed.2014.00199 PubMedCrossRefPubMedCentralGoogle Scholar
  199. 199.
    Bisicchia E, Sasso V, Catanzaro G, Leuti A, Besharat ZM, Chiacchiarini M, Molinari M, Ferretti E, Viscomi MT, Chiurchiu V (2018) Resolvin D1 halts remote neuroinflammation and improves functional recovery after focal brain damage Via ALX/FPR2 receptor-regulated microRNAs. Mol Neurobiol 55(8):6894–6905.  https://doi.org/10.1007/s12035-018-0889-z PubMedCrossRefGoogle Scholar
  200. 200.
    Paeschke N, von Haefen C, Endesfelder S, Sifringer M, Spies CD (2017) Dexmedetomidine prevents lipopolysaccharide-induced microRNA expression in the adult rat brain. Int J Mol Sci 18(9):1830.  https://doi.org/10.3390/ijms18091830 CrossRefPubMedCentralGoogle Scholar
  201. 201.
    Li M, Shao H, Zhang X, Qin B (2016) Hesperidin Alleviates lipopolysaccharide-induced neuroinflammation in mice by promoting the miRNA-132 pathway. Inflammation 39(5):1681–1689.  https://doi.org/10.1007/s10753-016-0402-7 PubMedCrossRefGoogle Scholar
  202. 202.
    Song J, Li N, Xia Y, Gao Z, Zou SF, Yan YH, Li SH, Wang Y, Meng YK, Yang JX, Kang TG (2016) arctigenin confers neuroprotection against mechanical trauma injury in human neuroblastoma SH-SY5Y cells by regulating miRNA-16 and miRNA-199a expression to alleviate inflammation. J Mol Neurosci 60(1):115–129.  https://doi.org/10.1007/s12031-016-0784-x PubMedCrossRefGoogle Scholar
  203. 203.
    Sinoy S, Fayaz SM, Charles KD, Suvanish VK, Kapfhammer JP, Rajanikant GK (2017) Amikacin inhibits miR-497 maturation and exerts post-ischemic neuroprotection. Mol Neurobiol 54(5):3683–3694.  https://doi.org/10.1007/s12035-016-9940-0 PubMedCrossRefGoogle Scholar
  204. 204.
    Wang Y, Dong X, Li Z, Wang W, Tian J, Chen J (2014) Downregulated RASD1 and upregulated miR-375 are involved in protective effects of calycosin on cerebral ischemia/reperfusion rats. J Neurol Sci 339(1–2):144–148.  https://doi.org/10.1016/j.jns.2014.02.002 PubMedCrossRefGoogle Scholar
  205. 205.
    Doeppner TR, Kaltwasser B, Sanchez-Mendoza EH, Caglayan AB, Bahr M, Hermann DM (2017) Lithium-induced neuroprotection in stroke involves increased miR-124 expression, reduced RE1-silencing transcription factor abundance and decreased protein deubiquitination by GSK3beta inhibition-independent pathways. J Cereb Blood Flow Metab 37(3):914–926.  https://doi.org/10.1177/0271678X16647738 PubMedCrossRefGoogle Scholar
  206. 206.
    Ma F, Liu F, Ding L, You M, Yue H, Zhou Y, Hou Y (2017) Anti-inflammatory effects of curcumin are associated with down regulating microRNA-155 in LPS-treated macrophages and mice. Pharm Biol 55(1):1263–1273.  https://doi.org/10.1080/13880209.2017.1297838 PubMedCrossRefPubMedCentralGoogle Scholar
  207. 207.
    Li Y, Kong D, Wang Z, Sarkar FH (2010) Regulation of microRNAs by natural agents: an emerging field in chemoprevention and chemotherapy research. Pharm Res 27(6):1027–1041.  https://doi.org/10.1007/s11095-010-0105-y PubMedCrossRefPubMedCentralGoogle Scholar
  208. 208.
    Phuah NH, Nagoor NH (2014) Regulation of microRNAs by natural agents: new strategies in cancer therapies. Biomed Res Int 2014:804510.  https://doi.org/10.1155/2014/804510 PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of NeurosurgeryUniversity of New Mexico Health Sciences CenterAlbuquerqueUSA

Personalised recommendations