Advertisement

Intrinsic Effects of Gold Nanoparticles on Oxygen–Glucose Deprivation/Reperfusion Injury in Rat Cortical Neurons

  • Yafei Zheng
  • Yuyun Wu
  • Ying Liu
  • Zhirui Guo
  • Tingting Bai
  • Ping Zhou
  • Jin Wu
  • Qin Yang
  • Zhengxia LiuEmail author
  • Xiang LuEmail author
Original Paper
  • 11 Downloads

Abstract

This study aimed to investigate the potential effects of gold nanoparticles (Au-NPs) on rat cortical neurons exposed to oxygen–glucose deprivation/reperfusion (OGD/R) and to elucidate the corresponding mechanisms. Primary rat cortical neurons were exposed to OGD/R, which is commonly used in vitro to mimic ischemic injury, and then treated with 5- or 20-nm Au-NPs. We then evaluated cell viability, apoptosis, oxidative stress, and mitochondrial respiration in these neurons. We found that 20-nm Au-NPs increased cell viability, alleviated neuronal apoptosis and oxidative stress, and improved mitochondrial respiration after OGD/R injury, while opposite effects were observed for 5-nm Au-NPs. In terms of the underlying mechanisms, we found that Au-NPs could regulate Akt signaling. Taken together, these results show that 20-nm Au-NPs can protect primary cortical neurons against OGD/R injury, possibly by decreasing apoptosis and oxidative stress, while activating Akt signaling and mitochondrial pathways. Our results suggest that Au-NPs may be potential therapeutic agents for ischemic stroke.

Keywords

Gold nanoparticles Ischemic stroke Primary rat cortical neurons Neuronal apoptosis Oxidative stress Mitochondria 

Notes

Acknowledgements

This work was supported by Grants from the National Science Foundation of China (Nos. 81300999, 81470501, 81770440, and 81471783).

Compliance with Ethical Standards

Conflict of interest

The authors report no conflict of interest in this work.

References

  1. 1.
    Benjamin EJ, Virani SS, Callaway CW, Chang AR, Cheng S, Chiuve SE, Cushman M, Delling FN, Deo R, de Ferranti SD, Ferguson JF, Fornage M, Gillespie C, Isasi CR, Jimenez MC, Jordan LC, Judd SE, Lackland D, Lichtman JH, Lisabeth L, Liu S, Longenecker CT, Lutsey PL, Matchar DB, Matsushita K, Mussolino ME, Nasir K, O’Flaherty M, Palaniappan LP, Pandey DK, Reeves MJ, Ritchey MD, Rodriguez CJ, Roth GA, Rosamond WD, Sampson UKA, Satou GM, Shah SH, Spartano NL, Tirschwell DL, Tsao CW, Voeks JH, Willey JZ, Wilkins JT, Wu JH, Alger HM, Wong SS, Muntner P (2018) Heart disease and stroke statistics-2018 update: a report from the American Heart Association. Circulation.  https://doi.org/10.1161/cir.0000000000000558 Google Scholar
  2. 2.
    Hankey GJ (2017) Stroke. Lancet 389(10069):641–654.  https://doi.org/10.1016/S0140-6736(16)30962-X Google Scholar
  3. 3.
    Wang P, Shao BZ, Deng Z, Chen S, Yue Z, Miao CY (2018) Autophagy in ischemic stroke. Prog Neurobiol.  https://doi.org/10.1016/j.pneurobio.2018.01.001 Google Scholar
  4. 4.
    Feigin VL, Norrving B, Mensah GA (2017) Global burden of stroke. Circ Res 120(3):439–448.  https://doi.org/10.1161/CIRCRESAHA.116.308413 Google Scholar
  5. 5.
    DALYs GBD, Collaborators H, Murray CJ, Barber RM, Foreman KJ, Abbasoglu Ozgoren A, Abd-Allah F, Abera SF, Aboyans V, Abraham JP, Abubakar I, Abu-Raddad LJ, Abu-Rmeileh NM, Achoki T, Ackerman IN, Ademi Z, Adou AK, Adsuar JC, Afshin A, Agardh EE, Alam SS, Alasfoor D, Albittar MI, Alegretti MA, Alemu ZA, Alfonso-Cristancho R, Alhabib S, Ali R, Alla F, Allebeck P, Almazroa MA, Alsharif U, Alvarez E, Alvis-Guzman N, Amare AT, Ameh EA, Amini H, Ammar W, Anderson HR, Anderson BO, Antonio CA, Anwari P, Arnlov J, Arsic Arsenijevic VS, Artaman A, Asghar RJ, Assadi R, Atkins LS, Avila MA, Awuah B, Bachman VF, Badawi A, Bahit MC, Balakrishnan K, Banerjee A, Barker-Collo SL, Barquera S, Barregard L, Barrero LH, Basu A, Basu S, Basulaiman MO, Beardsley J, Bedi N, Beghi E, Bekele T, Bell ML, Benjet C, Bennett DA, Bensenor IM, Benzian H, Bernabe E, Bertozzi-Villa A, Beyene TJ, Bhala N, Bhalla A, Bhutta ZA, Bienhoff K, Bikbov B, Biryukov S, Blore JD, Blosser CD, Blyth FM, Bohensky MA, Bolliger IW, Bora Basara B, Bornstein NM, Bose D, Boufous S, Bourne RR, Boyers LN, Brainin M, Brayne CE, Brazinova A, Breitborde NJ, Brenner H, Briggs AD, Brooks PM, Brown JC, Brugha TS, Buchbinder R, Buckle GC, Budke CM, Bulchis A, Bulloch AG, Campos-Nonato IR, Carabin H, Carapetis JR, Cardenas R, Carpenter DO, Caso V, Castaneda-Orjuela CA, Castro RE, Catala-Lopez F, Cavalleri F, Cavlin A, Chadha VK, Chang JC, Charlson FJ, Chen H, Chen W, Chiang PP, Chimed-Ochir O, Chowdhury R, Christensen H, Christophi CA, Cirillo M, Coates MM, Coffeng LE, Coggeshall MS, Colistro V, Colquhoun SM, Cooke GS, Cooper C, Cooper LT, Coppola LM, Cortinovis M, Criqui MH, Crump JA, Cuevas-Nasu L, Danawi H, Dandona L, Dandona R, Dansereau E, Dargan PI, Davey G, Davis A, Davitoiu DV, Dayama A, De Leo D, Degenhardt L, Del Pozo-Cruz B, Dellavalle RP, Deribe K, Derrett S, Des Jarlais DC, Dessalegn M, Dharmaratne SD, Dherani MK, Diaz-Torne C, Dicker D, Ding EL, Dokova K, Dorsey ER, Driscoll TR, Duan L, Duber HC, Ebel BE, Edmond KM, Elshrek YM, Endres M, Ermakov SP, Erskine HE, Eshrati B, Esteghamati A, Estep K, Faraon EJ, Farzadfar F, Fay DF, Feigin VL, Felson DT, Fereshtehnejad SM, Fernandes JG, Ferrari AJ, Fitzmaurice C, Flaxman AD, Fleming TD, Foigt N, Forouzanfar MH, Fowkes FG, Paleo UF, Franklin RC, Furst T, Gabbe B, Gaffikin L, Gankpe FG, Geleijnse JM, Gessner BD, Gething P, Gibney KB, Giroud M, Giussani G, Gomez Dantes H, Gona P, Gonzalez-Medina D, Gosselin RA, Gotay CC, Goto A, Gouda HN, Graetz N, Gugnani HC, Gupta R, Gupta R, Gutierrez RA, Haagsma J, Hafezi-Nejad N, Hagan H, Halasa YA, Hamadeh RR, Hamavid H, Hammami M, Hancock J, Hankey GJ, Hansen GM, Hao Y, Harb HL, Haro JM, Havmoeller R, Hay SI, Hay RJ, Heredia-Pi IB, Heuton KR, Heydarpour P, Higashi H, Hijar M, Hoek HW, Hoffman HJ, Hosgood HD, Hossain M, Hotez PJ, Hoy DG, Hsairi M, Hu G, Huang C, Huang JJ, Husseini A, Huynh C, Iannarone ML, Iburg KM, Innos K, Inoue M, Islami F, Jacobsen KH, Jarvis DL, Jassal SK, Jee SH, Jeemon P, Jensen PN, Jha V, Jiang G, Jiang Y, Jonas JB, Juel K, Kan H, Karch A, Karema CK, Karimkhani C, Karthikeyan G, Kassebaum NJ, Kaul A, Kawakami N, Kazanjan K, Kemp AH, Kengne AP, Keren A, Khader YS, Khalifa SE, Khan EA, Khan G, Khang YH, Kieling C, Kim D, Kim S, Kim Y, Kinfu Y, Kinge JM, Kivipelto M, Knibbs LD, Knudsen AK, Kokubo Y, Kosen S, Krishnaswami S, Kuate Defo B, Kucuk Bicer B, Kuipers EJ, Kulkarni C, Kulkarni VS, Kumar GA, Kyu HH, Lai T, Lalloo R, Lallukka T, Lam H, Lan Q, Lansingh VC, Larsson A, Lawrynowicz AE, Leasher JL, Leigh J, Leung R, Levitz CE, Li B, Li Y, Li Y, Lim SS, Lind M, Lipshultz SE, Liu S, Liu Y, Lloyd BK, Lofgren KT, Logroscino G, Looker KJ, Lortet-Tieulent J, Lotufo PA, Lozano R, Lucas RM, Lunevicius R, Lyons RA, Ma S, Macintyre MF, Mackay MT, Majdan M, Malekzadeh R, Marcenes W, Margolis DJ, Margono C, Marzan MB, Masci JR, Mashal MT, Matzopoulos R, Mayosi BM, Mazorodze TT, McGill NW, McGrath JJ, McKee M, McLain A, Meaney PA, Medina C, Mehndiratta MM, Mekonnen W, Melaku YA, Meltzer M, Memish ZA, Mensah GA, Meretoja A, Mhimbira FA, Micha R, Miller TR, Mills EJ, Mitchell PB, Mock CN, Mohamed Ibrahim N, Mohammad KA, Mokdad AH, Mola GL, Monasta L, Montanez Hernandez JC, Montico M, Montine TJ, Mooney MD, Moore AR, Moradi-Lakeh M, Moran AE, Mori R, Moschandreas J, Moturi WN, Moyer ML, Mozaffarian D, Msemburi WT, Mueller UO, Mukaigawara M, Mullany EC, Murdoch ME, Murray J, Murthy KS, Naghavi M, Naheed A, Naidoo KS, Naldi L, Nand D, Nangia V, Narayan KM, Nejjari C, Neupane SP, Newton CR, Ng M, Ngalesoni FN, Nguyen G, Nisar MI, Nolte S, Norheim OF, Norman RE, Norrving B, Nyakarahuka L, Oh IH, Ohkubo T, Ohno SL, Olusanya BO, Opio JN, Ortblad K, Ortiz A, Pain AW, Pandian JD, Panelo CI, Papachristou C, Park EK, Park JH, Patten SB, Patton GC, Paul VK, Pavlin BI, Pearce N, Pereira DM, Perez-Padilla R, Perez-Ruiz F, Perico N, Pervaiz A, Pesudovs K, Peterson CB, Petzold M, Phillips MR, Phillips BK, Phillips DE, Piel FB, Plass D, Poenaru D, Polinder S, Pope D, Popova S, Poulton RG, Pourmalek F, Prabhakaran D, Prasad NM, Pullan RL, Qato DM, Quistberg DA, Rafay A, Rahimi K, Rahman SU, Raju M, Rana SM, Razavi H, Reddy KS, Refaat A, Remuzzi G, Resnikoff S, Ribeiro AL, Richardson L, Richardus JH, Roberts DA, Rojas-Rueda D, Ronfani L, Roth GA, Rothenbacher D, Rothstein DH, Rowley JT, Roy N, Ruhago GM, Saeedi MY, Saha S, Sahraian MA, Sampson UK, Sanabria JR, Sandar L, Santos IS, Satpathy M, Sawhney M, Scarborough P, Schneider IJ, Schottker B, Schumacher AE, Schwebel DC, Scott JG, Seedat S, Sepanlou SG, Serina PT, Servan-Mori EE, Shackelford KA, Shaheen A, Shahraz S, Shamah Levy T, Shangguan S, She J, Sheikhbahaei S, Shi P, Shibuya K, Shinohara Y, Shiri R, Shishani K, Shiue I, Shrime MG, Sigfusdottir ID, Silberberg DH, Simard EP, Sindi S, Singh A, Singh JA, Singh L, Skirbekk V, Slepak EL, Sliwa K, Soneji S, Soreide K, Soshnikov S, Sposato LA, Sreeramareddy CT, Stanaway JD, Stathopoulou V, Stein DJ, Stein MB, Steiner C, Steiner TJ, Stevens A, Stewart A, Stovner LJ, Stroumpoulis K, Sunguya BF, Swaminathan S, Swaroop M, Sykes BL, Tabb KM, Takahashi K, Tandon N, Tanne D, Tanner M, Tavakkoli M, Taylor HR, Te Ao BJ, Tediosi F, Temesgen AM, Templin T, Ten Have M, Tenkorang EY, Terkawi AS, Thomson B, Thorne-Lyman AL, Thrift AG, Thurston GD, Tillmann T, Tonelli M, Topouzis F, Toyoshima H, Traebert J, Tran BX, Trillini M, Truelsen T, Tsilimbaris M, Tuzcu EM, Uchendu US, Ukwaja KN, Undurraga EA, Uzun SB, Van Brakel WH, Van De Vijver S, van Gool CH, Van Os J, Vasankari TJ, Venketasubramanian N, Violante FS, Vlassov VV, Vollset SE, Wagner GR, Wagner J, Waller SG, Wan X, Wang H, Wang J, Wang L, Warouw TS, Weichenthal S, Weiderpass E, Weintraub RG, Wenzhi W, Werdecker A, Westerman R, Whiteford HA, Wilkinson JD, Williams TN, Wolfe CD, Wolock TM, Woolf AD, Wulf S, Wurtz B, Xu G, Yan LL, Yano Y, Ye P, Yentur GK, Yip P, Yonemoto N, Yoon SJ, Younis MZ, Yu C, Zaki ME, Zhao Y, Zheng Y, Zonies D, Zou X, Salomon JA, Lopez AD, Vos T (2015) Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990-2013: quantifying the epidemiological transition. Lancet 386(10009):2145–2191.  https://doi.org/10.1016/s0140-6736(15)61340-x
  6. 6.
    Kisler K, Nelson AR, Montagne A, Zlokovic BV (2017) Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nat Rev Neurosci 18(7):419–434.  https://doi.org/10.1038/nrn.2017.48 Google Scholar
  7. 7.
    Goyal M, Demchuk AM, Menon BK, Eesa M, Rempel JL, Thornton J, Roy D, Jovin TG, Willinsky RA, Sapkota BL, Dowlatshahi D, Frei DF, Kamal NR, Montanera WJ, Poppe AY, Ryckborst KJ, Silver FL, Shuaib A, Tampieri D, Williams D, Bang OY, Baxter BW, Burns PA, Choe H, Heo JH, Holmstedt CA, Jankowitz B, Kelly M, Linares G, Mandzia JL, Shankar J, Sohn SI, Swartz RH, Barber PA, Coutts SB, Smith EE, Morrish WF, Weill A, Subramaniam S, Mitha AP, Wong JH, Lowerison MW, Sajobi TT, Hill MD, Investigators ET (2015) Randomized assessment of rapid endovascular treatment of ischemic stroke. N Engl J Med 372(11):1019–1030.  https://doi.org/10.1056/NEJMoa1414905 Google Scholar
  8. 8.
    Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA (2010) Glial and neuronal control of brain blood flow. Nature 468(7321):232–243.  https://doi.org/10.1038/nature09613 Google Scholar
  9. 9.
    Zlokovic BV (2011) Neurovascular pathways to neurodegeneration in Alzheimer’s disease and other disorders. Nat Rev Neurosci 12(12):723–738.  https://doi.org/10.1038/nrn3114 Google Scholar
  10. 10.
    Venkat P, Chopp M, Chen J (2017) Blood-brain barrier disruption, vascular impairment, and ischemia/reperfusion damage in diabetic stroke. J Am Heart Assoc.  https://doi.org/10.1161/jaha.117.005819 Google Scholar
  11. 11.
    Iadecola C (2013) The pathobiology of vascular dementia. Neuron 80(4):844–866.  https://doi.org/10.1016/j.neuron.2013.10.008 Google Scholar
  12. 12.
    Duehrkop C, Rieben R (2014) Ischemia/reperfusion injury: effect of simultaneous inhibition of plasma cascade systems versus specific complement inhibition. Biochem Pharmacol 88(1):12–22.  https://doi.org/10.1016/j.bcp.2013.12.013 Google Scholar
  13. 13.
    Wang M, Sun GB, Zhang JY, Luo Y, Yu YL, Xu XD, Meng XB, Zhang MD, Lin WB, Sun XB (2015) Elatoside C protects the heart from ischaemia/reperfusion injury through the modulation of oxidative stress and intracellular Ca(2)(+) homeostasis. Int J Cardiol 185:167–176.  https://doi.org/10.1016/j.ijcard.2015.03.140 Google Scholar
  14. 14.
    At Groehler, Kren S, Li Q, Robledo-Villafane M, Schmidt J, Garry M, Tretyakova N (2018) Oxidative cross-linking of proteins to DNA following ischemia-reperfusion injury. Free Radic Biol Med.  https://doi.org/10.1016/j.freeradbiomed.2018.03.010 Google Scholar
  15. 15.
    Koeppen M, Lee JW, Seo SW, Brodsky KS, Kreth S, Yang IV, Buttrick PM, Eckle T, Eltzschig HK (2018) Hypoxia-inducible factor 2-alpha-dependent induction of amphiregulin dampens myocardial ischemia-reperfusion injury. Nat Commun 9(1):816.  https://doi.org/10.1038/s41467-018-03105-2 Google Scholar
  16. 16.
    Li Y, Liu X (2018) Novel insights into the role of mitochondrial fusion and fission in cardiomyocyte apoptosis induced by ischemia/reperfusion. J Cell Physiol.  https://doi.org/10.1002/jcp.26522 Google Scholar
  17. 17.
    Xu H, Qin W, Hu X, Mu S, Zhu J, Lu W, Luo Y (2018) Lentivirus-mediated overexpression of OTULIN ameliorates microglia activation and neuroinflammation by depressing the activation of the NF-kappaB signaling pathway in cerebral ischemia/reperfusion rats. J Neuroinflamm 15(1):83.  https://doi.org/10.1186/s12974-018-1117-5 Google Scholar
  18. 18.
    Moussaddy A, Demchuk AM, Hill MD (2018) Thrombolytic therapies for ischemic stroke: Triumphs and future challenges. Neuropharmacology.  https://doi.org/10.1016/j.neuropharm.2017.11.010 Google Scholar
  19. 19.
    Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41(7):2740–2779.  https://doi.org/10.1039/c1cs15237h Google Scholar
  20. 20.
    Nicolardi S, van der Burgt YEM, Codee JDC, Wuhrer M, Hokke CH, Chiodo F (2017) Structural characterization of biofunctionalized gold nanoparticles by ultrahigh-resolution mass spectrometry. ACS Nano 11(8):8257–8264.  https://doi.org/10.1021/acsnano.7b03402 Google Scholar
  21. 21.
    Tan G, Onur MA (2018) Cellular localization and biological effects of 20 nm-gold nanoparticles. J Biomed Mater Res, Part A 106(6):1708–1721.  https://doi.org/10.1002/jbm.a.36373 Google Scholar
  22. 22.
    Zong J, Cobb SL, Cameron NR (2017) Peptide-functionalized gold nanoparticles: versatile biomaterials for diagnostic and therapeutic applications. Biomater Sci 5(5):872–886.  https://doi.org/10.1039/c7bm00006e Google Scholar
  23. 23.
    Vilela P, Heuer-Jungemann A, El-Sagheer A, Brown T, Muskens OL, Smyth NR, Kanaras AG (2018) Sensing of vimentin mRNA in 2D and 3D models of wounded skin using DNA-coated gold nanoparticles. Small.  https://doi.org/10.1002/smll.201703489 Google Scholar
  24. 24.
    Saraiva C, Praca C, Ferreira R, Santos T, Ferreira L, Bernardino L (2016) Nanoparticle-mediated brain drug delivery: overcoming blood-brain barrier to treat neurodegenerative diseases. J Controlled Release 235:34–47.  https://doi.org/10.1016/j.jconrel.2016.05.044 Google Scholar
  25. 25.
    Dykman L, Khlebtsov N (2012) Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem Soc Rev 41(6):2256–2282.  https://doi.org/10.1039/c1cs15166e Google Scholar
  26. 26.
    Betzer O, Perets N, Angel A, Motiei M, Sadan T, Yadid G, Offen D, Popovtzer R (2017) In vivo neuroimaging of exosomes using gold nanoparticles. ACS Nano 11(11):10883–10893.  https://doi.org/10.1021/acsnano.7b04495 Google Scholar
  27. 27.
    Liu Z, Shen Y, Wu Y, Yang Y, Wu J, Zhou P, Lu X, Guo Z (2013) An intrinsic therapy of gold nanoparticles in focal cerebral ischemia-reperfusion injury in rats. J Biomed Nanotechnol 9(6):1017–1028Google Scholar
  28. 28.
    Paula MM, Petronilho F, Vuolo F, Ferreira GK, De Costa L, Santos GP, Effting PS, Dal-Pizzol F, Dal-Bo AG, Frizon TE, Silveira PC, Pinho RA (2015) Gold nanoparticles and/or N-acetylcysteine mediate carrageenan-induced inflammation and oxidative stress in a concentration-dependent manner. J Biomed Mater Res, Part A 103(10):3323–3330.  https://doi.org/10.1002/jbm.a.35469 Google Scholar
  29. 29.
    Jeon KI, Byun MS, Jue DM (2003) Gold compound auranofin inhibits IkappaB kinase (IKK) by modifying Cys-179 of IKKbeta subunit. Exp Mol Med 35(2):61–66.  https://doi.org/10.1038/emm.2003.9 Google Scholar
  30. 30.
    Fernandez TD, Pearson JR, Leal MP, Torres MJ, Blanca M, Mayorga C, Le Guevel X (2015) Intracellular accumulation and immunological properties of fluorescent gold nanoclusters in human dendritic cells. Biomaterials 43:1–12.  https://doi.org/10.1016/j.biomaterials.2014.11.045 Google Scholar
  31. 31.
    Barathmanikanth S, Kalishwaralal K, Sriram M, Pandian SR, Youn HS, Eom S, Gurunathan S (2010) Anti-oxidant effect of gold nanoparticles restrains hyperglycemic conditions in diabetic mice. J Nanobiotechnol 8:16.  https://doi.org/10.1186/1477-3155-8-16 Google Scholar
  32. 32.
    Gao N, Sun H, Dong K, Ren J, Qu X (2015) Gold-nanoparticle-based multifunctional amyloid-beta inhibitor against Alzheimer’s disease. Chemistry 21(2):829–835.  https://doi.org/10.1002/chem.201404562 Google Scholar
  33. 33.
    Rizwan H, Mohanta J, Si S, Pal A (2017) Gold nanoparticles reduce high glucose-induced oxidative-nitrosative stress regulated inflammation and apoptosis via tuberin-mTOR/NF-kappaB pathways in macrophages. Int J Nanomed 12:5841–5862.  https://doi.org/10.2147/IJN.S141839 Google Scholar
  34. 34.
    Ferreira GK, Cardoso E, Vuolo FS, Michels M, Zanoni ET, Carvalho-Silva M, Gomes LM, Dal-Pizzol F, Rezin GT, Streck EL, Paula MM (2015) Gold nanoparticles alter parameters of oxidative stress and energy metabolism in organs of adult rats. Biochem Cell Biol 93(6):548–557.  https://doi.org/10.1139/bcb-2015-0030 Google Scholar
  35. 35.
    Muller AP, Ferreira GK, Pires AJ, de Bem Silveira G, de Souza DL, Brandolfi JA, de Souza CT, Paula MMS, Silveira PCL (2017) Gold nanoparticles prevent cognitive deficits, oxidative stress and inflammation in a rat model of sporadic dementia of Alzheimer’s type. Mater Sci Eng C Mater Biol Appl 77:476–483.  https://doi.org/10.1016/j.msec.2017.03.283 Google Scholar
  36. 36.
    Zorov DB, Filburn CR, Klotz LO, Zweier JL, Sollott SJ (2000) Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med 192(7):1001–1014Google Scholar
  37. 37.
    Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM (2005) Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev 105(4):1103–1169.  https://doi.org/10.1021/cr0300789 Google Scholar
  38. 38.
    Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346.  https://doi.org/10.1021/cr030698+ Google Scholar
  39. 39.
    Kuttner C, Mayer M, Dulle M, Moscoso AI, Lopez-Romero JM, Forster S, Fery A, Perez-Juste J, Contreras-Caceres R (2018) Seeded growth synthesis of gold nanotriangles: size control, SAXS analysis, and SERS performance. ACS Appl Mater Interfaces.  https://doi.org/10.1021/acsami.7b19081 Google Scholar
  40. 40.
    Guo C, Wang S, Duan J, Jia N, Zhu Y, Ding Y, Guan Y, Wei G, Yin Y, Xi M, Wen A (2017) Protocatechualdehyde protects against cerebral ischemia-reperfusion-induced oxidative injury via protein kinase cepsilon/Nrf2/HO-1 pathway. Mol Neurobiol 54(2):833–845.  https://doi.org/10.1007/s12035-016-9690-z Google Scholar
  41. 41.
    Liu Z, Wu Y, Guo Z, Liu Y, Shen Y, Zhou P, Lu X (2014) Effects of internalized gold nanoparticles with respect to cytotoxicity and invasion activity in lung cancer cells. PLoS ONE 9(6):e99175.  https://doi.org/10.1371/journal.pone.0099175 Google Scholar
  42. 42.
    Zhao K, Hao H, Liu J, Tong C, Cheng Y, Xie Z, Zang L, Mu Y, Han W (2015) Bone marrow-derived mesenchymal stem cells ameliorate chronic high glucose-induced beta-cell injury through modulation of autophagy. Cell Death Dis 6:e1885.  https://doi.org/10.1038/cddis.2015.230 Google Scholar
  43. 43.
    Zhang C, Shi S (2018) Physiological and proteomic responses of contrasting alfalfa (Medicago sativa L.) varieties to PEG-induced osmotic stress. Front Plant Sci 9:242.  https://doi.org/10.3389/fpls.2018.00242 Google Scholar
  44. 44.
    Wu L, Guo X, Hartson SD, Davis MA, He H, Medeiros DM, Wang W, Clarke SL, Lucas EA, Smith BJ, von Lintig J, Lin D (2017) Lack of beta, beta-carotene-9’, 10’-oxygenase 2 leads to hepatic mitochondrial dysfunction and cellular oxidative stress in mice. Mol Nutr Food Res.  https://doi.org/10.1002/mnfr.201600576 Google Scholar
  45. 45.
    Dranka BP, Benavides GA, Diers AR, Giordano S, Zelickson BR, Reily C, Zou L, Chatham JC, Hill BG, Zhang J, Landar A, Darley-Usmar VM (2011) Assessing bioenergetic function in response to oxidative stress by metabolic profiling. Free Radic Biol Med 51(9):1621–1635.  https://doi.org/10.1016/j.freeradbiomed.2011.08.005 Google Scholar
  46. 46.
    Dranka BP, Zielonka J, Kanthasamy AG, Kalyanaraman B (2012) Alterations in bioenergetic function induced by Parkinson’s disease mimetic compounds: lack of correlation with superoxide generation. J Neurochem 122(5):941–951.  https://doi.org/10.1111/j.1471-4159.2012.07836.x Google Scholar
  47. 47.
    Kang H, Lee GH, Jung H, Lee JW, Nam Y (2018) Inkjet-printed biofunctional thermo-plasmonic interfaces for patterned neuromodulation. ACS Nano 12(2):1128–1138.  https://doi.org/10.1021/acsnano.7b06617 Google Scholar
  48. 48.
    Brand MD, Nicholls DG (2011) Assessing mitochondrial dysfunction in cells. Biochem J 435(2):297–312.  https://doi.org/10.1042/BJ20110162 Google Scholar
  49. 49.
    Shilo M, Motiei M, Hana P, Popovtzer R (2014) Transport of nanoparticles through the blood-brain barrier for imaging and therapeutic applications. Nanoscale 6(4):2146–2152.  https://doi.org/10.1039/c3nr04878k Google Scholar
  50. 50.
    Sousa F, Mandal S, Garrovo C, Astolfo A, Bonifacio A, Latawiec D, Menk RH, Arfelli F, Huewel S, Legname G, Galla HJ, Krol S (2010) Functionalized gold nanoparticles: a detailed in vivo multimodal microscopic brain distribution study. Nanoscale 2(12):2826–2834.  https://doi.org/10.1039/c0nr00345j Google Scholar
  51. 51.
    Glazer ES, Zhu C, Hamir AN, Borne A, Thompson CS, Curley SA (2011) Biodistribution and acute toxicity of naked gold nanoparticles in a rabbit hepatic tumor model. Nanotoxicology 5(4):459–468.  https://doi.org/10.3109/17435390.2010.516026 Google Scholar
  52. 52.
    Pan Y, Leifert A, Ruau D, Neuss S, Bornemann J, Schmid G, Brandau W, Simon U, Jahnen-Dechent W (2009) Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small 5(18):2067–2076.  https://doi.org/10.1002/smll.200900466 Google Scholar
  53. 53.
    Paino IM, Marangoni VS, de Oliveira Rde C, Antunes LM, Zucolotto V (2012) Cyto and genotoxicity of gold nanoparticles in human hepatocellular carcinoma and peripheral blood mononuclear cells. Toxicol Lett 215(2):119–125.  https://doi.org/10.1016/j.toxlet.2012.09.025 Google Scholar
  54. 54.
    Lopez-Chaves C, Soto-Alvaredo J, Montes-Bayon M, Bettmer J, Llopis J, Sanchez-Gonzalez C (2018) Gold nanoparticles: distribution, bioaccumulation and toxicity. In vitro and in vivo studies. Nanomedicine 14(1):1–12.  https://doi.org/10.1016/j.nano.2017.08.011 Google Scholar
  55. 55.
    Xia Q, Li H, Liu Y, Zhang S, Feng Q, Xiao K (2017) The effect of particle size on the genotoxicity of gold nanoparticles. J Biomed Mater Res, Part A 105(3):710–719.  https://doi.org/10.1002/jbm.a.35944 Google Scholar
  56. 56.
    Takemura G, Kanoh M, Minatoguchi S, Fujiwara H (2013) Cardiomyocyte apoptosis in the failing heart—a critical review from definition and classification of cell death. Int J Cardiol 167(6):2373–2386.  https://doi.org/10.1016/j.ijcard.2013.01.163 Google Scholar
  57. 57.
    Caccamo A, Branca C, Piras IS, Ferreira E, Huentelman MJ, Liang WS, Readhead B, Dudley JT, Spangenberg EE, Green KN, Belfiore R, Winslow W, Oddo S (2017) Necroptosis activation in Alzheimer’s disease. Nat Neurosci 20(9):1236–1246.  https://doi.org/10.1038/nn.4608 Google Scholar
  58. 58.
    Ho YT, Poinard B, Kah JC (2016) Nanoparticle drug delivery systems and their use in cardiac tissue therapy. Nanomedicine 11(6):693–714.  https://doi.org/10.2217/nnm.16.6 Google Scholar
  59. 59.
    Bharadwaj VN, Nguyen DT, Kodibagkar VD, Stabenfeldt SE (2018) Nanoparticle-based therapeutics for brain injury. Adv Healthc Mater.  https://doi.org/10.1002/adhm.201700668 Google Scholar
  60. 60.
    Chamorro A, Dirnagl U, Urra X, Planas AM (2016) Neuroprotection in acute stroke: targeting excitotoxicity, oxidative and nitrosative stress, and inflammation. Lancet Neurol 15(8):869–881.  https://doi.org/10.1016/S1474-4422(16)00114-9 Google Scholar
  61. 61.
    Zhao H, Han Z, Ji X, Luo Y (2016) Epigenetic regulation of oxidative stress in ischemic stroke. Aging Dis 7(3):295–306.  https://doi.org/10.14336/AD.2015.1009 Google Scholar
  62. 62.
    Cheng YC, Sheen JM, Hu WL, Hung YC (2017) Polyphenols and oxidative stress in atherosclerosis-related ischemic heart disease and stroke. Oxid Med Cell longev 2017:8526438.  https://doi.org/10.1155/2017/8526438 Google Scholar
  63. 63.
    Suh SW, Shin BS, Ma H, Van Hoecke M, Brennan AM, Yenari MA, Swanson RA (2008) Glucose and NADPH oxidase drive neuronal superoxide formation in stroke. Ann Neurol 64(6):654–663.  https://doi.org/10.1002/ana.21511 Google Scholar
  64. 64.
    Li P, Stetler RA, Leak RK, Shi Y, Li Y, Yu W, Bennett MVL, Chen J (2017) Oxidative stress and DNA damage after cerebral ischemia: potential therapeutic targets to repair the genome and improve stroke recovery. Neuropharmacology.  https://doi.org/10.1016/j.neuropharm.2017.11.011 Google Scholar
  65. 65.
    Halestrap AP (2009) What is the mitochondrial permeability transition pore? J Mol Cell Cardiol 46(6):821–831.  https://doi.org/10.1016/j.yjmcc.2009.02.021 Google Scholar
  66. 66.
    Yoshitomi T, Nagasaki Y (2014) Reactive oxygen species-scavenging nanomedicines for the treatment of oxidative stress injuries. Adv Healthc Mater 3(8):1149–1161.  https://doi.org/10.1002/adhm.201300576 Google Scholar
  67. 67.
    Dkhil MA, Bauomy AA, Diab MS, Al-Quraishy S (2015) Antioxidant and hepatoprotective role of gold nanoparticles against murine hepatic schistosomiasis. Int J Nanomed 10:7467–7475.  https://doi.org/10.2147/IJN.S97622 Google Scholar
  68. 68.
    Lai TH, Chung CH, Chen BH, Hung CF, Inbaraj BS, Ma MC, Chen HM, Tsou CJ, Wu PH, Wu WB (2016) Gold nanoparticles compromise TNF-alpha-induced endothelial cell adhesion molecule expression through NF-kappaB and protein degradation pathways and reduce neointima formation in a rat carotid balloon injury model. J Biomed Nanotechnol 12(12):2185–2201Google Scholar
  69. 69.
    Ferreira GK, Cardoso E, Vuolo FS, Galant LS, Michels M, Goncalves CL, Rezin GT, Dal-Pizzol F, Benavides R, Alonso-Nunez G, Andrade VM, Streck EL, da Silva Paula MM (2017) Effect of acute and long-term administration of gold nanoparticles on biochemical parameters in rat brain. Mater Sci Eng, C 79:748–755.  https://doi.org/10.1016/j.msec.2017.05.110 Google Scholar
  70. 70.
    Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125(7):1241–1252.  https://doi.org/10.1016/j.cell.2006.06.010 Google Scholar
  71. 71.
    Zhou B, Tian R (2018) Mitochondrial dysfunction in pathophysiology of heart failure. J Clin Investig.  https://doi.org/10.1172/jci120849 Google Scholar
  72. 72.
    Bernardi P, Di Lisa F (2015) The mitochondrial permeability transition pore: molecular nature and role as a target in cardioprotection. J Mol Cell Cardiol 78:100–106.  https://doi.org/10.1016/j.yjmcc.2014.09.023 Google Scholar
  73. 73.
    Schapira AH (2007) Mitochondrial dysfunction in Parkinson’s disease. Cell Death Differ 14(7):1261–1266.  https://doi.org/10.1038/sj.cdd.4402160 Google Scholar
  74. 74.
    Vosler PS, Graham SH, Wechsler LR, Chen J (2009) Mitochondrial targets for stroke: focusing basic science research toward development of clinically translatable therapeutics. Stroke 40(9):3149–3155.  https://doi.org/10.1161/STROKEAHA.108.543769 Google Scholar
  75. 75.
    Schon EA, Przedborski S (2011) Mitochondria: the next (neurode)generation. Neuron 70(6):1033–1053.  https://doi.org/10.1016/j.neuron.2011.06.003 Google Scholar
  76. 76.
    Dawson TM, Dawson VL (2017) Mitochondrial mechanisms of neuronal cell death: potential therapeutics. Annu Rev Pharmacol Toxicol 57:437–454.  https://doi.org/10.1146/annurev-pharmtox-010716-105001 Google Scholar
  77. 77.
    Czarny P, Wigner P, Galecki P, Sliwinski T (2018) The interplay between inflammation, oxidative stress, DNA damage, DNA repair and mitochondrial dysfunction in depression. Prog Neuro-psychopharmacol Biol Psychiatry 80(Pt C):309–321.  https://doi.org/10.1016/j.pnpbp.2017.06.036 Google Scholar
  78. 78.
    Dixit S, Fessel JP, Harrison FE (2017) Mitochondrial dysfunction in the APP/PSEN1 mouse model of Alzheimer’s disease and a novel protective role for ascorbate. Free Radic Biol Med 112:515–523.  https://doi.org/10.1016/j.freeradbiomed.2017.08.021 Google Scholar
  79. 79.
    Zhang X, Du L, Zhang W, Yang Y, Zhou Q, Du G (2017) Therapeutic effects of baicalein on rotenone-induced Parkinson’s disease through protecting mitochondrial function and biogenesis. Sci Rep 7(1):9968.  https://doi.org/10.1038/s41598-017-07442-y Google Scholar
  80. 80.
    Li M, Feng B, Wang L, Guo S, Zhang P, Gong J, Zhang Y, Zheng A, Li H (2015) Tollip is a critical mediator of cerebral ischaemia-reperfusion injury. J Pathol 237(2):249–262.  https://doi.org/10.1002/path.4565 Google Scholar
  81. 81.
    Martin M, Rehani K, Jope RS, Michalek SM (2005) Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat Immunol 6(8):777–784.  https://doi.org/10.1038/ni1221 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Geriatrics, The Second Affiliated HospitalNanjing Medical UniversityNanjingPeople’s Republic of China
  2. 2.Department of Neurology, The Second Affiliated HospitalNanjing Medical UniversityNanjingPeople’s Republic of China
  3. 3.Key Laboratory for Aging & DiseaseNanjing Medical UniversityNanjingPeople’s Republic of China
  4. 4.Department of Medicine, Physiology and Biophysics, UC Irvine Diabetes Center, Center for Epigenetics and MetabolismUniversity of California IrvineIrvineUSA
  5. 5.Department of Geriatrics, The Second Affiliated HospitalNanjing Medical UniversityNanjingChina

Personalised recommendations