Advertisement

Role of Cdk5 in Kalirin7-Mediated Formation of Dendritic Spines

  • Ming-Xing Li
  • Hui Qiao
  • Ming Zhang
  • Xin-Ming MaEmail author
Original Paper

Abstract

A majority of excitatory synapses in the brain are localized on the dendritic spines. Alterations of spine density and morphology are associated with many neurological diseases. Understanding the molecular mechanisms underlying spine formation is important for understanding these diseases. Kalirin7 (Kal-7) is localized to the postsynaptic side of excitatory synapses in the neurons. Overexpression of Kal-7 causes an increase in spine density whereas knockdown expression of endogenous Kal-7 results in a decrease in spine density in primary cultured cortical neurons. However, the mechanisms underlying Kal-7-mediated spine formation are not entirely clear. Cyclin-dependent kinase 5 (Cdk5) plays a vital role in the formation of spines and synaptic plasticity. Kal-7 is phosphorylated by CDK5 at Thr1590, the unique Cdk5 phosphorylation site in the Kal-7 protein. This study was to explore the role of CDK5-mediated phosphorylation of Kal-7 in spine formation and the underlying mechanisms. Our results showed expression of Kal-7T/D (mimicked phosphorylation), Kal-7T/A mutants (blocked phosphorylation) or wild-type (Wt) Kal-7 caused in a similar increase in spine density, while spine size of Wt Kal-7-expressing cortical neurons was bigger than that in Kal-7 T\A-expressing neurons, but smaller than that in Kal-7T/D-expressing neurons. The fluorescence intensity of NMDA receptor subunit NR2B (GluN2B) staining was stronger along the MAP2 positive dendrites of Kal-7T/D-expressing neurons than that in Kal-7T/A- or Wt Kal-7-expressing neurons. The fluorescence intensity of AMPA receptor subunit GluR1 (GluA1) staining showed the same trend as GluN2B staining. These findings suggest that Cdk5 affects the function of Kal-7 on spine morphology and function via GluN2B and GluA1 receptors during dendritic spine formation.

Keywords

Synapse Spine formation Kalirin Phosphorylation Primary cortical neuron 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China [81671338 and 81371552], Connecticut Innovation [14SCBUCHC11], and Innovation Project of Guangxi Graduate Education [T32524]. Thanks to Drs. Dick Mains and Betty Eipper for providing pEAK-myc-Kal-7, Kal-7 mutant vectors and Kal-7 antibody.

References

  1. 1.
    Yuste R, Bonhoeffer T (2001) Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annu Rev Neurosci 24:1071–1089.  https://doi.org/10.1146/annurev.neuro.24.1.1071 CrossRefGoogle Scholar
  2. 2.
    Ehlers MD (2002) Molecular morphogens for dendritic spines. Trends Neurosci 25:64–67CrossRefGoogle Scholar
  3. 3.
    Engert F, Bonhoeffer T (1999) Dendritic spine changes associated with hippocampal long-term synaptic plasticity. Nature 399:66–70CrossRefGoogle Scholar
  4. 4.
    Yang Y, Zhou Q (2009) Spine modifications associated with long-term potentiation. Neuroscientist 15:464–476CrossRefGoogle Scholar
  5. 5.
    McKinney RA (2010) Excitatory amino acid involvement in dendritic spine formation, maintenance and remodelling. J Physiol 588:107–116CrossRefGoogle Scholar
  6. 6.
    Akashi K et al (2009) NMDA receptor GluN2B (GluR epsilon 2/NR2B) subunit is crucial for channel function, postsynaptic macromolecular organization, and actin cytoskeleton at hippocampal CA3 synapses. J Neurosci 29:10869–10882CrossRefGoogle Scholar
  7. 7.
    Tang YP et al (1999) Genetic enhancement of learning and memory in mice. Nature 401:63–69.  https://doi.org/10.1038/43432 CrossRefGoogle Scholar
  8. 8.
    Kasai H, Matsuzaki M, Noguchi J, Yasumatsu N, Nakahara H (2003) Structure-stability-function relationships of dendritic spines. Trends Neurosci 26:360–368CrossRefGoogle Scholar
  9. 9.
    Matsuzaki M et al (2001) Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci 4:1086–1092CrossRefGoogle Scholar
  10. 10.
    Kopec CD, Real E, Kessels HW, Malinow R (2007) GluR1 links structural and functional plasticity at excitatory synapses. J Neurosci 27:13706–13718CrossRefGoogle Scholar
  11. 11.
    van Spronsen M, Hoogenraad CC (2010) Synapse pathology in psychiatric and neurologic disease. Curr Neurol Neurosci Rep 10:207–214.  https://doi.org/10.1007/s11910-010-0104-8 CrossRefGoogle Scholar
  12. 12.
    Qiao H et al (2016) Dendritic spines in depression: what we learned from animal models. Neural Plast 2016:8056370.  https://doi.org/10.1155/2016/8056370 CrossRefGoogle Scholar
  13. 13.
    Waites CL, Garner CC (2011) Presynaptic function in health and disease. Trends Neurosci 34:326–337.  https://doi.org/10.1016/j.tins.2011.03.004 CrossRefGoogle Scholar
  14. 14.
    Gipson CD, Olive MF (2017) Structural and functional plasticity of dendritic spines—root or result of behavior? Genes Brain Behav 16:101–117.  https://doi.org/10.1111/gbb.12324 CrossRefGoogle Scholar
  15. 15.
    Mandela P, Ma XM (2012) Kalirin, a key player in synapse formation, is implicated in human diseases. Neural Plast 2012:728161CrossRefGoogle Scholar
  16. 16.
    Lai KO, Ip NY (2013) Structural plasticity of dendritic spines: the underlying mechanisms and its dysregulation in brain disorders. Biochim Biophys Acta 1832:2257–2263.  https://doi.org/10.1016/j.bbadis.2013.08.012 CrossRefGoogle Scholar
  17. 17.
    Forrest MP, Parnell E, Penzes P (2018) Dendritic structural plasticity and neuropsychiatric disease. Nat Rev Neurosci 19:215–234.  https://doi.org/10.1038/nrn.2018.16 CrossRefGoogle Scholar
  18. 18.
    Ma XM, Huang J, Wang Y, Eipper BA, Mains RE (2003) Kalirin, a multifunctional Rho guanine nucleotide exchange factor, is necessary for maintenance of hippocampal pyramidal neuron dendrites and dendritic spines. J Neurosci 23:10593–10603CrossRefGoogle Scholar
  19. 19.
    Penzes P et al (2001) The neuronal Rho-GEF Kalirin-7 interacts with PDZ domain-containing proteins and regulates dendritic morphogenesis. Neuron 29:229–242CrossRefGoogle Scholar
  20. 20.
    Ma XM et al (2008) Kalirin-7 is required for synaptic structure and function. J Neurosci 28:12368–12382.  https://doi.org/10.1523/JNEUROSCI.4269-08.2008 CrossRefGoogle Scholar
  21. 21.
    Ma XM, Wang Y, Ferraro F, Mains RE, Eipper BA (2008) Kalirin-7 is an essential component of both shaft and spine excitatory synapses in hippocampal interneurons. J Neurosci 28:711–724.  https://doi.org/10.1523/JNEUROSCI.5283-07.2008 CrossRefGoogle Scholar
  22. 22.
    Ichikawa M, Muramoto K, Kobayashi K, Kawahara M, Kuroda Y (1993) Formation and maturation of synapses in primary cultures of rat cerebral cortical cells: an electron microscopic study. Neurosci Res 16:95–103CrossRefGoogle Scholar
  23. 23.
    Lai KO, Ip NY (2015) Cdk5: a key player at neuronal synapse with diverse functions. Mini Rev Med Chem 15:390–395CrossRefGoogle Scholar
  24. 24.
    Hawasli AH et al (2007) Cyclin-dependent kinase 5 governs learning and synaptic plasticity via control of NMDAR degradation. Nat Neurosci 10:880–886.  https://doi.org/10.1038/nn1914 CrossRefGoogle Scholar
  25. 25.
    Mita N, He X, Sasamoto K, Mishiba T, Ohshima T (2016) Cyclin-dependent kinase 5 regulates dendritic spine formation and maintenance of cortical neuron in the mouse brain. Cereb Cortex 26:967–976.  https://doi.org/10.1093/cercor/bhu264 CrossRefGoogle Scholar
  26. 26.
    Mishiba T et al (2014) Cdk5/p35 functions as a crucial regulator of spatial learning and memory. Mol Brain 7:82.  https://doi.org/10.1186/s13041-014-0082-x CrossRefGoogle Scholar
  27. 27.
    Shah K, Rossie S (2018) Tale of the good and the Bad Cdk5: remodeling of the actin cytoskeleton in the brain. Mol Neurobiol 55:3426–3438.  https://doi.org/10.1007/s12035-017-0525-3 CrossRefGoogle Scholar
  28. 28.
    Su SC, Tsai LH (2011) Cyclin-dependent kinases in brain development and disease. Annu Rev Cell Dev Biol 27:465–491.  https://doi.org/10.1146/annurev-cellbio-092910-154023 CrossRefGoogle Scholar
  29. 29.
    Xin X et al (2008) Regulation of Kalirin by Cdk5. J Cell Sci 121:2601–2611CrossRefGoogle Scholar
  30. 30.
    Johnson RC, Penzes P, Eipper BA, Mains RE (2000) Isoforms of kalirin, a neuronal Dbl family member, generated through use of different 5′- and 3′-ends along with an internal translational initiation site. J Biol Chem 275:19324–19333.  https://doi.org/10.1074/jbc.M000676200 CrossRefGoogle Scholar
  31. 31.
    Penzes P et al (2000) An isoform of kalirin, a brain-specific GDP/GTP exchange factor, is enriched in the postsynaptic density fraction. J Biol Chem 275:6395–6403CrossRefGoogle Scholar
  32. 32.
    Ma XM et al (2011) Kalirin-7, an important component of excitatory synapses, is regulated by estradiol in hippocampal neurons. Hippocampus 21:661–677.  https://doi.org/10.1002/hipo.20780 CrossRefGoogle Scholar
  33. 33.
    Blanpied TA, Ehlers MD (2004) Microanatomy of dendritic spines: emerging principles of synaptic pathology in psychiatric and neurological disease. Biol Psychiatry 55:1121–1127.  https://doi.org/10.1016/j.biopsych.2003.10.006 CrossRefGoogle Scholar
  34. 34.
    Yuste R, Bonhoeffer T (2001) Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annu Rev Neurosci 24:1071–1089CrossRefGoogle Scholar
  35. 35.
    Matsuzaki M, Honkura N, Ellis-Davies GC, Kasai H (2004) Structural basis of long-term potentiation in single dendritic spines. Nature 429:761–766.  https://doi.org/10.1038/nature02617 CrossRefGoogle Scholar
  36. 36.
    De Roo M, Klauser P, Garcia PM, Poglia L, Muller D (2008) Spine dynamics and synapse remodeling during LTP and memory processes. Prog Brain Res 169:199–207.  https://doi.org/10.1016/S0079-6123(07)00011-8 CrossRefGoogle Scholar
  37. 37.
    Segal M (2017) Dendritic spines: morphological building blocks of memory. Neurobiol Learn Mem 138:3–9.  https://doi.org/10.1016/j.nlm.2016.06.007 CrossRefGoogle Scholar
  38. 38.
    Bourne JN, Harris KM (2008) Balancing structure and function at hippocampal dendritic spines. Annu Rev Neurosci 31:47–67.  https://doi.org/10.1146/annurev.neuro.31.060407.125646 CrossRefGoogle Scholar
  39. 39.
    Nimchinsky EA, Sabatini BL, Svoboda K (2002) Structure and function of dendritic spines. Annu Rev Physiol 64:313–353.  https://doi.org/10.1146/annurev.physiol.64.081501.160008 CrossRefGoogle Scholar
  40. 40.
    Segal M (1995) Dendritic spines for neuroprotection: a hypothesis. Trends Neurosci 18:468–471CrossRefGoogle Scholar
  41. 41.
    El-Husseini AE, Schnell E, Chetkovich DM, Nicoll RA, Bredt D (2000) S. PSD-95 involvement in maturation of excitatory synapses. Science 290:1364–1368Google Scholar
  42. 42.
    Ebrahimi S, Okabe S (2014) Structural dynamics of dendritic spines: molecular composition, geometry and functional regulation. Biochim Biophys Acta 1838:2391–2398.  https://doi.org/10.1016/j.bbamem.2014.06.002 CrossRefGoogle Scholar
  43. 43.
    Noguchi J, Matsuzaki M, Ellis-Davies GC, Kasai H (2005) Spine-neck geometry determines NMDA receptor-dependent Ca2+ signaling in dendrites. Neuron 46:609–622.  https://doi.org/10.1016/j.neuron.2005.03.015 CrossRefGoogle Scholar
  44. 44.
    Xie Z et al (2007) Kalirin-7 controls activity-dependent structural and functional plasticity of dendritic spines. Neuron 56:640–656CrossRefGoogle Scholar
  45. 45.
    Herring BE, Nicoll RA (2016) Kalirin and Trio proteins serve critical roles in excitatory synaptic transmission and LTP. Proc Natl Acad Sci USA 113:2264–2269.  https://doi.org/10.1073/pnas.1600179113 CrossRefGoogle Scholar
  46. 46.
    Long LH et al (2009) Age-related synaptic changes in the CA1 stratum radiatum and spatial learning impairment in rats. Clin Exp Pharmacol Physiol 36:675–681.  https://doi.org/10.1111/j.1440-1681.2008.05132.x CrossRefGoogle Scholar
  47. 47.
    Moser MB, Trommald M, Andersen P (1994) An increase in dendritic spine density on hippocampal CA1 pyramidal cells following spatial learning in adult rats suggests the formation of new synapses. Proc Natl Acad Sci USA 91:12673–12675CrossRefGoogle Scholar
  48. 48.
    Berman RF, Hannigan JH, Sperry MA, Zajac CS (1996) Prenatal alcohol exposure and the effects of environmental enrichment on hippocampal dendritic spine density. Alcohol 13:209–216CrossRefGoogle Scholar
  49. 49.
    Fiala JC, Spacek J, Harris KM (2002) Dendritic spine pathology: cause or consequence of neurological disorders? Brain Res Brain Res Rev 39:29–54CrossRefGoogle Scholar
  50. 50.
    Irwin SA, Galvez R, Greenough WT (2000) Dendritic spine structural anomalies in fragile-X mental retardation syndrome. Cereb Cortex 10:1038–1044CrossRefGoogle Scholar
  51. 51.
    Kaufmann WE, Moser HW (2000) Dendritic anomalies in disorders associated with mental retardation. Cereb Cortex 10:981–991CrossRefGoogle Scholar
  52. 52.
    Kiraly DD et al (2010) Behavioral and morphological responses to cocaine require kalirin7. Biol Psychiatry 68:249–255.  https://doi.org/10.1016/j.biopsych.2010.03.024 CrossRefGoogle Scholar
  53. 53.
    Xu C et al (2016) Orbitofrontal cortex 5-HT2A receptor mediates chronic stress-induced depressive-like behaviors and alterations of spine density and Kalirin7. Neuropharmacology 109:7–17.  https://doi.org/10.1016/j.neuropharm.2016.02.020 CrossRefGoogle Scholar
  54. 54.
    Roberts RC, Conley R, Kung L, Peretti FJ, Chute DJ (1996) Reduced striatal spine size in schizophrenia: a postmortem ultrastructural study. Neuroreport 7:1214–1218CrossRefGoogle Scholar
  55. 55.
    Konopaske GT, Lange N, Coyle JT, Benes FM (2014) Prefrontal cortical dendritic spine pathology in schizophrenia and bipolar disorder. JAMA Psychiatry 71:1323–1331.  https://doi.org/10.1001/jamapsychiatry.2014.1582 CrossRefGoogle Scholar
  56. 56.
    Hill JJ, Hashimoto T, Lewis DA (2006) Molecular mechanisms contributing to dendritic spine alterations in the prefrontal cortex of subjects with schizophrenia. Mol Psychiatry 11:557–566CrossRefGoogle Scholar
  57. 57.
    Yan Y, Eipper BA, Mains RE (2015) Kalirin-9 and Kalirin-12 play essential roles in dendritic outgrowth and branching. Cereb Cortex 25:3487–3501.  https://doi.org/10.1093/cercor/bhu182 CrossRefGoogle Scholar
  58. 58.
    May V, Schiller MR, Eipper BA, Mains RE (2002) Kalirin Dbl-homology guanine nucleotide exchange factor 1 domain initiates new axon outgrowths via RhoG-mediated mechanisms. J Neurosci 22:6980–6990CrossRefGoogle Scholar
  59. 59.
    Kiraly DD, Lemtiri-Chlieh F, Levine ES, Mains RE, Eipper BA (2011) Kalirin binds the NR2B subunit of the NMDA receptor, altering its synaptic localization and function. J Neurosci 31:12554–12565.  https://doi.org/10.1523/JNEUROSCI.3143-11.2011 CrossRefGoogle Scholar
  60. 60.
    Lemtiri-Chlieh F et al (2011) Kalirin-7 is necessary for normal NMDA receptor-dependent synaptic plasticity. BMC Neurosci 12:126.  https://doi.org/10.1186/1471-2202-12-126 CrossRefGoogle Scholar
  61. 61.
    Brigman JL et al (2010) Loss of GluN2B-containing NMDA receptors in CA1 hippocampus and cortex impairs long-term depression, reduces dendritic spine density, and disrupts learning. J Neurosci 30:4590–4600.  https://doi.org/10.1523/JNEUROSCI.0640-10.2010 CrossRefGoogle Scholar
  62. 62.
    Paoletti P, Bellone C, Zhou Q (2013) NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 14:383–400.  https://doi.org/10.1038/nrn3504 CrossRefGoogle Scholar
  63. 63.
    Shinohara Y, Hirase H (2009) Size and receptor density of glutamatergic synapses: a viewpoint from left-right asymmetry of CA3-CA1 connections. Front Neuroanat 3:10.  https://doi.org/10.3389/neuro.05.010.2009 CrossRefGoogle Scholar
  64. 64.
    Kessels HW, Malinow R (2009) Synaptic AMPA receptor plasticity and behavior. Neuron 61:340–350.  https://doi.org/10.1016/j.neuron.2009.01.015 CrossRefGoogle Scholar
  65. 65.
    Mitsushima D, Ishihara K, Sano A, Kessels HW, Takahashi T (2011) Contextual learning requires synaptic AMPA receptor delivery in the hippocampus. Proc Natl Acad Sci USA 108:12503–12508.  https://doi.org/10.1073/pnas.1104558108 CrossRefGoogle Scholar
  66. 66.
    Rumpel S, LeDoux J, Zador A, Malinow R (2005) Postsynaptic receptor trafficking underlying a form of associative learning. Science 308:83–88.  https://doi.org/10.1126/science.1103944 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Subtropical Agro-Bioresource Conservation and UtilizationGuangxi UniversityNanningChina
  2. 2.College of Life ScienceShaanxi Normal UniversityXi’anChina
  3. 3.Department of NeuroscienceUniversity of Connecticut Health CenterFarmingtonUSA

Personalised recommendations