Advertisement

Suberoylanilide Hydroxamic Acid Triggers Autophagy by Influencing the mTOR Pathway in the Spinal Dorsal Horn in a Rat Neuropathic Pain Model

  • Xiang-Lan Feng
  • Hong-Bo Deng
  • Zheng-Gang Wang
  • Yun Wu
  • Jian-Juan Ke
  • Xiao-Bo FengEmail author
Original Paper
  • 94 Downloads

Abstract

Histone acetylation levels can be upregulated by treating cells with histone deacetylase inhibitors (HDACIs), which can induce autophagy. Autophagy flux in the spinal cord of rats following the left fifth lumber spinal nerve ligation (SNL) is involved in the progression of neuropathic pain. Suberoylanilide hydroxamic acid (SAHA), one of the HDACIs can interfere with the epigenetic process of histone acetylation, which has been shown to ease neuropathic pain. Recent research suggest that SAHA can stimulate autophagy via the mammalian target of rapamycin (mTOR) pathway in some types of cancer cells. However, little is known about the role of SAHA and autophagy in neuropathic pain after nerve injury. In the present study, we aim to investigate autophagy flux and the role of the mTOR pathway on spinal cells autophagy activation in neuropathic pain induced by SNL in rats that received SAHA treatment. Autophagy-related proteins and mTOR or its active form were assessed by using western blot, immunohistochemistry, double immunofluorescence staining and transmission electron microscopy (TEM). We found that SAHA decreased the paw mechanical withdrawal threshold (PMWT) of the lower compared with SNL. Autophagy flux was mainly disrupted in the astrocytes and neuronal cells of the spinal cord dorsal horn on postsurgical day 28 and was reversed by daily intrathecal injection of SAHA (n = 100 nmol/day or n = 200 nmol/day). SAHA also decreased mTOR and phosphorylated mTOR (p-mTOR) expression, especially p-mTOR expression in astrocytes and neuronal cells of the spinal dorsal horn. These results suggest that SAHA attenuates neuropathic pain and contributes to autophagy flux in astrocytes and neuronal cells of the spinal dorsal horn via the mTOR signaling pathway.

Keywords

Histone deacetylase inhibitor Autophagy flux Mammalian target of rapamycin Spinal dorsal horn Neuropathic pain 

Abbreviations

SAHA

Suberoylanilide hydroxamic acid

mTOR

Mammalian target of rapamycin

p-mTOR

Phosphorylated mTOR

PMWT

Paw mechanical withdrawal threshold

SNL

Spinal nerve ligation

HDACI

Histone deacetylation inhibitor

HDAC

Histone deacetylase

LC3

Microtubule associated protein light chain 3

CNS

Central nervous system

Notes

Acknowledgements

This work was supported by the National Nature Science Foundation of China (No. 81471858) and the Scientific Research Program of Hubei Health and Family Planning Committee (No. WJ2017M036).

Compliance with Ethical Standards

Conflict of interest

There are no conflicts of interest.

References

  1. 1.
    Baron R (2006) Mechanisms of disease: neuropathic pain—a clinical perspective. Nat Clin Pract Neurol 2(2):95–106.  https://doi.org/10.1038/ncpneuro0113 CrossRefPubMedGoogle Scholar
  2. 2.
    Dworkin RH, Backonja M, Rowbotham MC, Allen RR, Argoff CR, Bennett GJ, Bushnell MC, Farrar JT, Galer BS, Haythornthwaite JA, Hewitt DJ, Loeser JD, Max MB, Saltarelli M, Schmader KE, Stein C, Thompson D, Turk DC, Wallace MS, Watkins LR, Weinstein SM (2003) Advances in neuropathic pain: diagnosis, mechanisms, and treatment recommendations. Arch Neurol 60(11):1524–1534.  https://doi.org/10.1001/archneur.60.11.1524 CrossRefPubMedGoogle Scholar
  3. 3.
    Baron R (2009) Neuropathic pain: a clinical perspective. Handb Exp Pharmacol.  https://doi.org/10.1007/978-3-540-79090-7_1 CrossRefPubMedGoogle Scholar
  4. 4.
    Jensen TS, Baron R, Haanpaa M, Kalso E, Loeser JD, Rice AS, Treede RD (2011) A new definition of neuropathic pain. Pain 152(10):2204–2205.  https://doi.org/10.1016/j.pain.2011.06.017 CrossRefPubMedGoogle Scholar
  5. 5.
    Colloca L, Ludman T, Bouhassira D, Baron R, Dickenson AH, Yarnitsky D, Freeman R, Truini A, Attal N, Finnerup NB, Eccleston C, Kalso E, Bennett DL, Dworkin RH, Raja SN (2017) Neuropathic pain. Nat Rev Dis Prim 3:17002.  https://doi.org/10.1038/nrdp.2017.2 CrossRefPubMedGoogle Scholar
  6. 6.
    Fiore NT, Austin PJ (2016) Are the emergence of affective disturbances in neuropathic pain states contingent on supraspinal neuroinflammation? Brain Behav Immun 56:397–411.  https://doi.org/10.1016/j.bbi.2016.04.012 CrossRefPubMedGoogle Scholar
  7. 7.
    Finnerup NB, Attal N, Haroutounian S, McNicol E, Baron R, Dworkin RH, Gilron I, Haanpaa M, Hansson P, Jensen TS, Kamerman PR, Lund K, Moore A, Raja SN, Rice AS, Rowbotham M, Sena E, Siddall P, Smith BH, Wallace M (2015) Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol 14(2):162–173.  https://doi.org/10.1016/s1474-4422(14)70251-0 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Hearn L, Derry S, Phillips T, Moore RA, Wiffen PJ (2014) Imipramine for neuropathic pain in adults. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.CD010769.pub2 CrossRefPubMedGoogle Scholar
  9. 9.
    Uchida H, Matsushita Y, Araki K, Mukae T, Ueda H (2015) Histone deacetylase inhibitors relieve morphine resistance in neuropathic pain after peripheral nerve injury. J Pharmacol Sci 128(4):208–211.  https://doi.org/10.1016/j.jphs.2015.07.040 CrossRefPubMedGoogle Scholar
  10. 10.
    Denk F, Huang W, Sidders B, Bithell A, Crow M, Grist J, Sharma S, Ziemek D, Rice AS, Buckley NJ, McMahon SB (2013) HDAC inhibitors attenuate the development of hypersensitivity in models of neuropathic pain. Pain 154(9):1668–1679.  https://doi.org/10.1016/j.pain.2013.05.021 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bai G, Wei D, Zou S, Ren K, Dubner R (2010) Inhibition of class II histone deacetylases in the spinal cord attenuates inflammatory hyperalgesia. Mol Pain 6:51.  https://doi.org/10.1186/1744-8069-6-51 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Denk F, McMahon SB (2012) Chronic pain: emerging evidence for the involvement of epigenetics. Neuron 73(3):435–444.  https://doi.org/10.1016/j.neuron.2012.01.012 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Matsushita Y, Araki K, Omotuyi O, Mukae T, Ueda H (2013) HDAC inhibitors restore C-fibre sensitivity in experimental neuropathic pain model. Br J Pharmacol 170(5):991–998.  https://doi.org/10.1111/bph.12366 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Liang L, Lutz BM, Bekker A, Tao YX (2015) Epigenetic regulation of chronic pain. Epigenomics 7(2):235–245.  https://doi.org/10.2217/epi.14.75 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kukkar A, Singh N, Jaggi AS (2014) Attenuation of neuropathic pain by sodium butyrate in an experimental model of chronic constriction injury in rats. J Formos Med Assoc 113(12):921–928.  https://doi.org/10.1016/j.jfma.2013.05.013 CrossRefPubMedGoogle Scholar
  16. 16.
    Xu K, Dai XL, Huang HC, Jiang ZF (2011) Targeting HDACs: a promising therapy for Alzheimer’s disease. Oxidative Med Cell Longev 2011:143269.  https://doi.org/10.1155/2011/143269 CrossRefGoogle Scholar
  17. 17.
    Klionsky DJ (2007) Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 8(11):931–937.  https://doi.org/10.1038/nrm2245 CrossRefPubMedGoogle Scholar
  18. 18.
    Rubinsztein DC, Gestwicki JE, Murphy LO, Klionsky DJ (2007) Potential therapeutic applications of autophagy. Nat Rev Drug Discov 6(4):304–312.  https://doi.org/10.1038/nrd2272 CrossRefPubMedGoogle Scholar
  19. 19.
    Raudino F (2013) Non-cognitive symptoms and related conditions in the Alzheimer’s disease: a literature review. Neurol Sci 34(8):1275–1282.  https://doi.org/10.1007/s10072-013-1424-7 CrossRefPubMedGoogle Scholar
  20. 20.
    Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132(1):27–42.  https://doi.org/10.1016/j.cell.2007.12.018 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Berliocchi L, Russo R, Maiaru M, Levato A, Bagetta G, Corasaniti MT (2011) Autophagy impairment in a mouse model of neuropathic pain. Mol Pain 7:83.  https://doi.org/10.1186/1744-8069-7-83 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Piao Y, Gwon DH, Kang DW, Hwang TW, Shin N, Kwon HH, Shin HJ, Yin Y, Kim JJ, Hong J, Kim HW, Kim Y, Kim SR, Oh SH, Kim DW (2018) TLR4-mediated autophagic impairment contributes to neuropathic pain in chronic constriction injury mice. Mol Barin 11(1):11.  https://doi.org/10.1186/s13041-018-0354-y CrossRefGoogle Scholar
  23. 23.
    Marinelli S, Nazio F, Tinari A, Ciarlo L, D’Amelio M, Pieroni L, Vacca V, Urbani A, Cecconi F, Malorni W, Pavone F (2014) Schwann cell autophagy counteracts the onset and chronification of neuropathic pain. Pain 155(1):93–107.  https://doi.org/10.1016/j.pain.2013.09.013 CrossRefPubMedGoogle Scholar
  24. 24.
    Zhang E, Yi MH, Ko Y, Kim HW, Seo JH, Lee YH, Lee W, Kim DW (2013) Expression of LC3 and Beclin 1 in the spinal dorsal horn following spinal nerve ligation-induced neuropathic pain. Brain Res 1519:31–39.  https://doi.org/10.1016/j.brainres.2013.04.055 CrossRefPubMedGoogle Scholar
  25. 25.
    Hrzenjak A, Kremser ML, Strohmeier B, Moinfar F, Zatloukal K, Denk H (2008) SAHA induces caspase-independent, autophagic cell death of endometrial stromal sarcoma cells by influencing the mTOR pathway. J Pathol 216(4):495–504.  https://doi.org/10.1002/path.2434 CrossRefPubMedGoogle Scholar
  26. 26.
    Klionsky DJ, Abdelmohsen K, Abe A, Zughaier SM (2016) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 12 (1):1–222.  https://doi.org/10.1080/15548627.2015.1100356 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Chiao MT, Cheng WY, Yang YC, Shen CC, Ko JL (2013) Suberoylanilide hydroxamic acid (SAHA) causes tumor growth slowdown and triggers autophagy in glioblastoma stem cells. Autophagy 9(10):1509–1526.  https://doi.org/10.4161/auto.25664 CrossRefPubMedGoogle Scholar
  28. 28.
    Lee JY, Kuo CW, Tsai SL, Cheng SM, Chen SH, Chan HH, Lin CH, Lin KY, Li CF, Kanwar JR, Leung EY, Cheung CC, Huang WJ, Wang YC, Cheung CH (2016) Inhibition of HDAC3- and HDAC6-promoted survivin expression plays an important role in SAHA-induced autophagy and viability reduction in breast cancer cells. Front Pharmacol 7:81.  https://doi.org/10.3389/fphar.2016.00081 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Swiech L, Perycz M, Malik A, Jaworski J (2008) Role of mTOR in physiology and pathology of the nervous system. Biochim Biophys Acta 1784(1):116–132.  https://doi.org/10.1016/j.bbapap.2007.08.015 CrossRefPubMedGoogle Scholar
  30. 30.
    Obara I, Tochiki KK, Geranton SM, Carr FB, Lumb BM, Liu Q, Hunt SP (2011) Systemic inhibition of the mammalian target of rapamycin (mTOR) pathway reduces neuropathic pain in mice. Pain 152(11):2582–2595.  https://doi.org/10.1016/j.pain.2011.07.025 CrossRefPubMedGoogle Scholar
  31. 31.
    Obara I, Medrano MC, Signoret-Genest J, Jimenez-Diaz L, Geranton SM, Hunt SP (2015) Inhibition of the mammalian target of rapamycin complex 1 signaling pathway reduces itch behaviour in mice. Pain 156(8):1519–1529.  https://doi.org/10.1097/j.pain.0000000000000197 CrossRefPubMedGoogle Scholar
  32. 32.
    Li G, Lu X, Zhang S, Zhou Q, Zhang L (2015) mTOR and Erk1/2 signaling in the cerebrospinal fluid-contacting nucleus is involved in neuropathic pain. Neurochem Res 40(5):1053–1062.  https://doi.org/10.1007/s11064-015-1564-7 CrossRefPubMedGoogle Scholar
  33. 33.
    Asante CO, Wallace VC, Dickenson AH (2010) Mammalian target of rapamycin signaling in the spinal cord is required for neuronal plasticity and behavioral hypersensitivity associated with neuropathy in the rat. J Pain 11(12):1356–1367.  https://doi.org/10.1016/j.jpain.2010.03.013 CrossRefPubMedGoogle Scholar
  34. 34.
    Tillu DV, Melemedjian OK, Asiedu MN, Qu N, De Felice M, Dussor G, Price TJ (2012) Resveratrol engages AMPK to attenuate ERK and mTOR signaling in sensory neurons and inhibits incision-induced acute and chronic pain. Mol Pain 8:5.  https://doi.org/10.1186/1744-8069-8-5 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Cao H, Zhang YQ (2008) Spinal glial activation contributes to pathological pain states. Neurosci Biobehav Rev 32(5):972–983.  https://doi.org/10.1016/j.neubiorev.2008.03.009 CrossRefPubMedGoogle Scholar
  36. 36.
    Echeverry S, Shi XQ, Yang M, Huang H, Wu Y, Lorenzo LE, Perez-Sanchez J, Bonin RP, De Koninck Y, Zhang J (2017) Spinal microglia are required for long-term maintenance of neuropathic pain. Pain 158(9):1792–1801.  https://doi.org/10.1097/j.pain.0000000000000982 CrossRefPubMedGoogle Scholar
  37. 37.
    Mika J, Zychowska M, Popiolek-Barczyk K, Rojewska E, Przewlocka B (2013) Importance of glial activation in neuropathic pain. Eur J Pharmacol 716(1–3):106–119.  https://doi.org/10.1016/j.ejphar.2013.01.072 CrossRefPubMedGoogle Scholar
  38. 38.
    Lucocq JM, Hacker C (2013) Cutting a fine figure: on the use of thin sections in electron microscopy to quantify autophagy. Autophagy 9(9):1443–1448.  https://doi.org/10.4161/auto.25570 CrossRefPubMedGoogle Scholar
  39. 39.
    Shih MH, Kao SC, Wang W, Yaster M, Tao YX (2012) Spinal cord NMDA receptor-mediated activation of mammalian target of rapamycin is required for the development and maintenance of bone cancer-induced pain hypersensitivities in rats. J Pain 13(4):338–349.  https://doi.org/10.1016/j.jpain.2011.12.006 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Sakura S, Kirihara Y, Muguruma T, Kishimoto T, Saito Y (2005) The comparative neurotoxicity of intrathecal lidocaine and bupivacaine in rats. Anesthesia Analg 101(2):541–547.  https://doi.org/10.1213/01.ane.0000155960.61157.12 table of contents.CrossRefGoogle Scholar
  41. 41.
    Norsted Gregory E, Codeluppi S, Gregory JA, Steinauer J, Svensson CI (2010) Mammalian target of rapamycin in spinal cord neurons mediates hypersensitivity induced by peripheral inflammation. Neuroscience 169(3):1392–1402.  https://doi.org/10.1016/j.neuroscience.2010.05.067 CrossRefPubMedGoogle Scholar
  42. 42.
    Kim SH, Chung JM (1992) An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 50(3):355–363CrossRefGoogle Scholar
  43. 43.
    Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53(1):55–63CrossRefGoogle Scholar
  44. 44.
    Bjorkoy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171(4):603–614.  https://doi.org/10.1083/jcb.200507002 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Inoue S, Taguchi T, Yamashita T, Nakamura M, Ushida T (2017) The prevalence and impact of chronic neuropathic pain on daily and social life: a nationwide study in a Japanese population. Eur J Pain 21(4):727–737.  https://doi.org/10.1002/ejp.977 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Cui SS, Lu R, Zhang H, Wang W, Ke JJ (2016) Suberoylanilide hydroxamic acid prevents downregulation of spinal glutamate transporter-1 and attenuates spinal nerve ligation-induced neuropathic pain behavior. Neuroreport 27(6):427–434.  https://doi.org/10.1097/wnr.0000000000000558 CrossRefPubMedGoogle Scholar
  47. 47.
    Antonioli M, Di Rienzo M, Piacentini M, Fimia GM (2017) Emerging mechanisms in initiating and terminating autophagy. Trends Biochem Sci 42(1):28–41.  https://doi.org/10.1016/j.tibs.2016.09.008 CrossRefPubMedGoogle Scholar
  48. 48.
    Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140(3):313–326.  https://doi.org/10.1016/j.cell.2010.01.028 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Berliocchi L, Maiaru M, Varano GP, Russo R, Corasaniti MT, Bagetta G, Tassorelli C (2015) Spinal autophagy is differently modulated in distinct mouse models of neuropathic pain. Mol Pain 11:3.  https://doi.org/10.1186/1744-8069-11-3 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Thakur KK, Saini J, Mahajan K, Singh D, Jayswal DP, Mishra S, Bishayee A, Sethi G, Kunnumakkara AB (2017) Therapeutic implications of toll-like receptors in peripheral neuropathic pain. Pharmacol Res 115:224–232.  https://doi.org/10.1016/j.phrs.2016.11.019 CrossRefPubMedGoogle Scholar
  51. 51.
    Feng T, Yin Q, Weng ZL, Zhang JC, Wang KF, Yuan SY, Cheng W (2014) Rapamycin ameliorates neuropathic pain by activating autophagy and inhibiting interleukin-1beta in the rat spinal cord. J Huazhong Univ Sci Technol Med Sci 34(6):830–837.  https://doi.org/10.1007/s11596-014-1361-6 CrossRefPubMedGoogle Scholar
  52. 52.
    Yang YP, Liang ZQ, Gu ZL, Qin ZH (2005) Molecular mechanism and regulation of autophagy. Acta Pharmacol Sin 26(12):1421–1434.  https://doi.org/10.1111/j.1745-7254.2005.00235.x CrossRefPubMedGoogle Scholar
  53. 53.
    Geranton SM, Jimenez-Diaz L, Torsney C, Tochiki KK, Stuart SA, Leith JL, Lumb BM, Hunt SP (2009) A rapamycin-sensitive signaling pathway is essential for the full expression of persistent pain states. J Neurosci 29(47):15017–15027.  https://doi.org/10.1523/jneurosci.3451-09.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Liang L, Tao B, Fan L, Yaster M, Zhang Y, Tao YX (2013) mTOR and its downstream pathway are activated in the dorsal root ganglion and spinal cord after peripheral inflammation, but not after nerve injury. Brain Res 1513:17–25.  https://doi.org/10.1016/j.brainres.2013.04.003 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Richon VM, Sandhoff TW, Rifkind RA, Marks PA (2000) Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci USA 97(18):10014–10019.  https://doi.org/10.1073/pnas.180316197 CrossRefPubMedGoogle Scholar
  56. 56.
    Benjamin D, Jost JP (2001) Reversal of methylation-mediated repression with short-chain fatty acids: evidence for an additional mechanism to histone deacetylation. Nucleic Acids Res 29(17):3603–3610CrossRefGoogle Scholar
  57. 57.
    Cherng CH, Lee KC, Chien CC, Chou KY, Cheng YC, Hsin ST, Lee SO, Shen CH, Tsai RY, Wong CS (2014) Baicalin ameliorates neuropathic pain by suppressing HDAC1 expression in the spinal cord of spinal nerve ligation rats. J Formos Med Assoc 113(8):513–520.  https://doi.org/10.1016/j.jfma.2013.04.007 CrossRefPubMedGoogle Scholar
  58. 58.
    Sanna MD, Guandalini L, Romanelli MN, Galeotti N (2017) The new HDAC1 inhibitor LG325 ameliorates neuropathic pain in a mouse model. Pharmacol Biochem Behav 160:70–75.  https://doi.org/10.1016/j.pbb.2017.08.006 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of AnesthesiologyZhongnan Hospital of Wuhan UniversityWuhanChina

Personalised recommendations