Effect of Silk Fibroin on Neuroregeneration After Traumatic Brain Injury

  • M. M. Moisenovich
  • E. Y. Plotnikov
  • A. M. Moysenovich
  • D. N. Silachev
  • T. I. Danilina
  • E. S. Savchenko
  • M. M. Bobrova
  • L. A. Safonova
  • V. V. Tatarskiy
  • M. S. Kotliarova
  • I. I. Agapov
  • D. B. ZorovEmail author
Original Paper


Traumatic brain injury is one of the leading causes of disability among the working-age population worldwide. Despite attempts to develop neuroprotective therapeutic approaches, including pharmacological or cellular technologies, significant advances in brain regeneration have not yet been achieved. Development of silk fibroin-based biomaterials represents a new frontier in neuroregenerative therapies after brain injury. In this study, we estimated the short and long-term effects of silk fibroin scaffold transplantation on traumatic brain injury and biocompatibility of this biomaterial within rat neuro-vascular cells. Silk fibroin microparticles were injected into a brain damage area 1 day after the injury. Silk fibroin affords neuroprotection as judged by diminished brain damage and recovery of long-term neurological functions. We did not detect considerable toxicity to neuro-vascular cells cultured on fibroin/fibroin-gelatin microparticles in vitro. Cultivation of primary cell cultures of neurons and astrocytes on silk fibroin matrices demonstrated their higher viability under oxygen-glucose deprivation compared to 2D conditions on plastic plates. Thus, we conclude that scaffolds based on silk fibroin can become the basis for the creation of constructs aimed to treat brain regeneration after injury.


Scaffold Neurons Astrocytes Neuroprotection Fibroin Ischemia 



The reported study was funded by RFBR according to the research project no. 17-00-00359 and Russian Science Foundation (14-24-00107—model of the brain trauma used for animals, and OGD model used for cells).


  1. 1.
    Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Judd SE, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Mackey RH, Magid DJ, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER 3rd, Moy CS, Mussolino ME, Neumar RW, Nichol G, Pandey DK, Paynter NP, Reeves MJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Wong ND, Woo D, Turner MB, American Heart Association Statistics C, Stroke Statistics S (2014) Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation 129:e28–e292CrossRefPubMedGoogle Scholar
  2. 2.
    Burdick JA, Mauck RL, Gorman JH 3rd, Gorman RC (2013) Acellular biomaterials: an evolving alternative to cell-based therapies. Sci Transl Med 5:176ps174CrossRefGoogle Scholar
  3. 3.
    Seo JH, Guo S, Lok J, Navaratna D, Whalen MJ, Kim KW, Lo EH (2012) Neurovascular matrix metalloproteinases and the blood-brain barrier. Curr Pharm Des 18:3645–3648CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Huang L, Wu ZB, Zhuge Q, Zheng W, Shao B, Wang B, Sun F, Jin K (2014) Glial scar formation occurs in the human brain after ischemic stroke. Int J Med Sci 11:344–348CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35CrossRefPubMedGoogle Scholar
  6. 6.
    Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22:391–397CrossRefPubMedGoogle Scholar
  7. 7.
    Fitch MT, Doller C, Combs CK, Landreth GE, Silver J (1999) Cellular and molecular mechanisms of glial scarring and progressive cavitation: in vivo and in vitro analysis of inflammation-induced secondary injury after CNS trauma. J Neurosci 19:8182–8198CrossRefPubMedGoogle Scholar
  8. 8.
    Nih LR, Carmichael ST, Segura T (2016) Hydrogels for brain repair after stroke: an emerging treatment option. Curr Opin Biotechnol 40:155–163CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Carmichael ST (2006) Cellular and molecular mechanisms of neural repair after stroke: making waves. Ann Neurol 59:735–742CrossRefPubMedGoogle Scholar
  10. 10.
    Davies SJ, Fitch MT, Memberg SP, Hall AK, Raisman G, Silver J (1997) Regeneration of adult axons in white matter tracts of the central nervous system. Nature 390:680–683CrossRefPubMedGoogle Scholar
  11. 11.
    Pizzorusso T, Medini P, Berardi N, Chierzi S, Fawcett JW, Maffei L (2002) Reactivation of ocular dominance plasticity in the adult visual cortex. Science 298:1248–1251CrossRefPubMedGoogle Scholar
  12. 12.
    Gogolla N, Caroni P, Lüthi A, Herry C (2009) Perineuronal nets protect fear memories from erasure. Science 325:1258–1261CrossRefPubMedGoogle Scholar
  13. 13.
    Happel MF, Niekisch H, Castiblanco Rivera LL, Ohl FW, Deliano M, Frischknecht R (2014) Enhanced cognitive flexibility in reversal learning induced by removal of the extracellular matrix in auditory cortex. Proc Natl Acad Sci USA 111:2800–2805CrossRefPubMedGoogle Scholar
  14. 14.
    Bikbaev A, Frischknecht R, Heine M (2015) Brain extracellular matrix retains connectivity in neuronal networks. Sci Rep 5:14527CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Orive G, Anitua E, Pedraz JL, Emerich DF (2009) Biomaterials for promoting brain protection, repair and regeneration. Nat Rev Neurosci 10:682–692CrossRefPubMedGoogle Scholar
  16. 16.
    Jin K, Mao X, Xie L, Galvan V, Lai B, Wang Y, Gorostiza O, Wang X, Greenberg DA (2010) Transplantation of human neural precursor cells in Matrigel scaffolding improves outcome from focal cerebral ischemia after delayed postischemic treatment in rats. J Cereb Blood Flow Metab 30:534–544CrossRefPubMedGoogle Scholar
  17. 17.
    Bible E, Qutachi O, Chau DY, Alexander MR, Shakesheff KM, Modo M (2012) Neo-vascularization of the stroke cavity by implantation of human neural stem cells on VEGF-releasing PLGA microparticles. Biomaterials 33:7435–7446CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Emerich DF, Silva E, Ali O, Mooney D, Bell W, Yu SJ, Kaneko Y, Borlongan C (2010) Injectable VEGF hydrogels produce near complete neurological and anatomical protection following cerebral ischemia in rats. Cell Transplant 19:1063–1071CrossRefPubMedGoogle Scholar
  19. 19.
    Yu H, Cao B, Feng M, Zhou Q, Sun X, Wu S, Jin S, Liu H, Lianhong J (2010) Combinated transplantation of neural stem cells and collagen type I promote functional recovery after cerebral ischemia in rats. Anat Rec (Hoboken) 293:911–917CrossRefGoogle Scholar
  20. 20.
    Ma J, Tian WM, Hou SP, Xu QY, Spector M, Cui FZ (2007) An experimental test of stroke recovery by implanting a hyaluronic acid hydrogel carrying a Nogo receptor antibody in a rat model. Biomed Mater 2:233–240CrossRefPubMedGoogle Scholar
  21. 21.
    Szybala C, Pritchard EM, Lusardi TA, Li T, Wilz A, Kaplan DL, Boison D (2009) Antiepileptic effects of silk-polymer based adenosine release in kindled rats. Exp Neurol 219:126–135CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Das S, Sharma M, Saharia D, Sarma KK, Sarma MG, Borthakur BB, Bora U (2015) In vivo studies of silk based gold nano-composite conduits for functional peripheral nerve regeneration. Biomaterials 62:66–75CrossRefPubMedGoogle Scholar
  23. 23.
    Yang Y, Yuan X, Ding F, Yao D, Gu Y, Liu J, Gu X (2011) Repair of rat sciatic nerve gap by a silk fibroin-based scaffold added with bone marrow mesenchymal stem cells. Tissue Eng Part A 17:2231–2244CrossRefPubMedGoogle Scholar
  24. 24.
    Arkhipova AY, Nosenko MA, Malyuchenko NV, Zvartsev RV, Moisenovich AM, Zhdanova AS, Vasil’eva TV, Gorshkova EA, Agapov II, Drutskaya MS, Nedospasov SA, Moisenovich MM (2016) Effects of fibroin microcarriers on inflammation and regeneration of deep skin wounds in mice. Biochemistry (Moscow) 81:1251–1260CrossRefGoogle Scholar
  25. 25.
    Orlova AA, Kotlyarova MS, Lavrenov VS, Volkova SV, Arkhipova AY (2014) Relationship between gelatin concentrations in silk fibroin-based composite scaffolds and adhesion and proliferation of mouse embryo fibroblasts. Bull Exp Biol Med 158:88–91CrossRefPubMedGoogle Scholar
  26. 26.
    Feeney DM, Boyeson MG, Linn RT, Murray HM, Dail WG (1981) Responses to cortical injury: I. Methodology and local effects of contusions in the rat. Brain Res 211:67–77CrossRefPubMedGoogle Scholar
  27. 27.
    Isaev NK, Novikova SV, Stelmashook EV, Barskov IV, Silachev DN, Khaspekov LG, Skulachev VP, Zorov DB (2012) Mitochondria-targeted plastoquinone antioxidant SkQR1 decreases trauma-induced neurological deficit in rat. Biochemistry (Moscow) 77:996–999CrossRefGoogle Scholar
  28. 28.
    Silachev DN, Uchevatkin AA, Pirogov YA, Zorov DB, Isaev NK (2009) Comparative evaluation of two methods for studies of experimental focal ischemia: magnetic resonance tomography and triphenyltetrazoleum detection of brain injuries. Bull Exp Biol Med 147:269–272CrossRefPubMedGoogle Scholar
  29. 29.
    Jolkkonen J, Puurunen K, Rantakomi S, Harkonen A, Haapalinna A, Sivenius J (2000) Behavioral effects of the alpha(2)-adrenoceptor antagonist, atipamezole, after focal cerebral ischemia in rats. Eur J Pharmacol 400:211–219CrossRefPubMedGoogle Scholar
  30. 30.
    Schallert T, Fleming SM, Leasure JL, Tillerson JL, Bland ST (2000) CNS plasticity and assessment of forelimb sensorimotor outcome in unilateral rat models of stroke, cortical ablation, parkinsonism and spinal cord injury. Neuropharmacology 39:777–787CrossRefPubMedGoogle Scholar
  31. 31.
    Brewer GJ (1995) Serum-free B27/neurobasal medium supports differentiated growth of neurons from the striatum, substantia nigra, septum, cerebral cortex, cerebellum, and dentate gyrus. J Neurosci Res 42:674–683CrossRefPubMedGoogle Scholar
  32. 32.
    McCarthy KD, de Vellis J (1980) Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol 85:890–902CrossRefPubMedGoogle Scholar
  33. 33.
    Silachev DN, Khailova LS, Babenko VA, Gulyaev MV, Kovalchuk SI, Zorova LD, Plotnikov EY, Antonenko YN, Zorov DB (2014) Neuroprotective effect of glutamate-substituted analog of gramicidin A is mediated by the uncoupling of mitochondria. Biochim Biophys Acta 1840:3434–3442CrossRefPubMedGoogle Scholar
  34. 34.
    Fawcett JW, Barker RA, Dunnett SB (1995) Dopaminergic neuronal survival and the effects of bFGF in explant, three dimensional and monolayer cultures of embryonic rat ventral mesencephalon. Exp Brain Res 106:275–282CrossRefPubMedGoogle Scholar
  35. 35.
    Wevers NR, van Vught R, Wilschut KJ, Nicolas A, Chiang C, Lanz HL, Trietsch SJ, Joore J, Vulto P (2016) High-throughput compound evaluation on 3D networks of neurons and glia in a microfluidic platform. Sci Rep 6:38856CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Qi Y, Wang H, Wei K, Yang Y, Zheng RY, Kim IS, Zhang KQ (2017) A review of structure construction of silk fibroin biomaterials from single structures to multi-level structures. Int J Mol Sci CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Man AJ, Davis HE, Itoh A, Leach JK, Bannerman P (2011) Neurite outgrowth in fibrin gels is regulated by substrate stiffness. Tissue Eng Part A 17:2931–2942CrossRefPubMedGoogle Scholar
  38. 38.
    Hopkins AM, De Laporte L, Tortelli F, Spedden E, Staii C, Atherton TJ, Hubbell JA, Kaplan DL (2013) Silk hydrogels as soft substrates for neural tissue engineering. Adv Funct Mater 23:5140–5149CrossRefGoogle Scholar
  39. 39.
    Bagrov D, Zhuikov V, Chudinova Y, Yarisheva A, Kotlyarova M, Arkhipova A, Khaydapova D, Moisenovich M, Shaitan K (2017) Mechanical properties of films and three-dimensional scaffolds made of fibroin and gelatin. Biophysics 62:17–23CrossRefGoogle Scholar
  40. 40.
    Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5:146–156CrossRefPubMedGoogle Scholar
  41. 41.
    Lao LL, Peppas NA, Boey FY, Venkatraman SS (2011) Modeling of drug release from bulk-degrading polymers. Int J Pharm 418:28–41CrossRefPubMedGoogle Scholar
  42. 42.
    Benfenati V, Toffanin S, Capelli R, Camassa LM, Ferroni S, Kaplan DL, Omenetto FG, Muccini M, Zamboni R (2010) A silk platform that enables electrophysiology and targeted drug delivery in brain astroglial cells. Biomaterials 31:7883–7891CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Tang X, Ding F, Yang Y, Hu N, Wu H, Gu X (2009) Evaluation on in vitro biocompatibility of silk fibroin-based biomaterials with primarily cultured hippocampal neurons. J Biomed Mater Res A 91:166–174CrossRefPubMedGoogle Scholar
  44. 44.
    Tang-Schomer MD, Hu X, Tupaj M, Tien LW, Whalen M, Omenetto F, Kaplan DL (2014) Film-based implants for supporting neuron-electrode integrated interfaces for the brain. Adv Funct Mater 24:1938–1948CrossRefPubMedGoogle Scholar
  45. 45.
    Chomchalao P, Pongcharoen S, Sutheerawattananonda M, Tiyaboonchai W (2013) Fibroin and fibroin blended three-dimensional scaffolds for rat chondrocyte culture. Biomed Eng Online 12:28CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Gast D, Riedle S, Kiefel H, Muerkoster SS, Schafer H, Schafer MK, Altevogt P (2008) The RGD integrin binding site in human L1-CAM is important for nuclear signaling. Exp Cell Res 314:2411–2418CrossRefPubMedGoogle Scholar
  47. 47.
    Davis JQ, Bennett V (1994) Ankyrin binding activity shared by the neurofascin/L1/NrCAM family of nervous system cell adhesion molecules. J Biol Chem 269:27163–27166PubMedGoogle Scholar
  48. 48.
    An B, Tang-Schomer M, Huang W, He J, Jones J, Lewis RV, Kaplan DL (2015) Physical and biological regulation of neuron regenerative growth and network formation on recombinant dragline silks. Biomaterials 48:137–146CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Nichol JW, Khademhosseini A (2009) Modular tissue engineering: engineering biological tissues from the bottom up. Soft Matter 5:1312–1319CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Imparato G, Urciuolo F, Casale C, Netti PA (2013) The role of microscaffold properties in controlling the collagen assembly in 3D dermis equivalent using modular tissue engineering. Biomaterials 34:7851–7861CrossRefPubMedGoogle Scholar
  51. 51.
    Chen M, Wang X, Ye Z, Zhang Y, Zhou Y, Tan WS (2011) A modular approach to the engineering of a centimeter-sized bone tissue construct with human amniotic mesenchymal stem cells-laden microcarriers. Biomaterials 32:7532–7542CrossRefPubMedGoogle Scholar
  52. 52.
    Leung BM, Sefton MV (2007) A modular tissue engineering construct containing smooth muscle cells and endothelial cells. Ann Biomed Eng 35:2039–2049CrossRefPubMedGoogle Scholar
  53. 53.
    Tedesco MT, Di Lisa D, Massobrio P, Colistra N, Pesce M, Catelani T, Dellacasa E, Raiteri R, Martinoia S, Pastorino L (2018) Soft chitosan microbeads scaffold for 3D functional neuronal networks. Biomaterials 156:159–171CrossRefPubMedGoogle Scholar
  54. 54.
    Kim CE, Lee JH, Yeon YK, Park CH, Yang J (2017) Effects of silk fibroin in murine dry eye. Sci Rep 7:44364CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Rodriguez-Nogales A, Algieri F, De Matteis L, Lozano-Perez AA, Garrido-Mesa J, Vezza T, de la Fuente JM, Cenis JL, Galvez J, Rodriguez-Cabezas ME (2016) Intestinal anti-inflammatory effects of RGD-functionalized silk fibroin nanoparticles in trinitrobenzenesulfonic acid-induced experimental colitis in rats. Int J Nanomed 11:5945–5958CrossRefGoogle Scholar
  56. 56.
    Aykac A, Karanlik B, Sehirli AO (2018) Protective effect of silk fibroin in burn injury in rat model. Gene 641:287–291CrossRefPubMedGoogle Scholar
  57. 57.
    Fernandez-Garcia L, Mari-Buye N, Barios JA, Madurga R, Elices M, Perez-Rigueiro J, Ramos M, Guinea GV, Gonzalez-Nieto D (2016) Safety and tolerability of silk fibroin hydrogels implanted into the mouse brain. Acta Biomater 45:262–275CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • M. M. Moisenovich
    • 1
  • E. Y. Plotnikov
    • 2
  • A. M. Moysenovich
    • 1
  • D. N. Silachev
    • 2
  • T. I. Danilina
    • 3
  • E. S. Savchenko
    • 3
  • M. M. Bobrova
    • 1
    • 4
  • L. A. Safonova
    • 1
    • 4
  • V. V. Tatarskiy
    • 5
  • M. S. Kotliarova
    • 1
  • I. I. Agapov
    • 1
    • 4
  • D. B. Zorov
    • 2
    Email author
  1. 1.Biological FacultyLomonosov Moscow State UniversityMoscowRussia
  2. 2.A.N. Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
  3. 3.Faculty of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscowRussia
  4. 4.Bionanotechnology LaboratoryV.I.Shumakov National Medical Research Center of Transplantology and Artificial OrgansMoscowRussia
  5. 5.N.N. Blokhin Russian Cancer Research CenterMoscowRussia

Personalised recommendations