Advertisement

Differentiation-Dependent Effects of a New Recombinant Manganese Superoxide Dismutase on Human SK-N-BE Neuron-Like Cells

  • Alessio Crestini
  • Rosa Vona
  • Maria Lo Giudice
  • Marco Sbriccoli
  • Paola Piscopo
  • Antonella Borrelli
  • Roberto Rivabene
  • Laura Ricceri
  • Aldo Mancini
  • Annamaria ConfaloniEmail author
Original Paper
  • 35 Downloads

Abstract

We have recently isolated a new isoform of recombinant manganese superoxide dismutase (rMnSOD) which provides a potent antitumor activity and strongly counteracts the occurrence of oxidative stress and tissue inflammation. This isoform, in addition to the enzymatic action common to all SODs, also shows special functional and structural properties, essentially due to the presence of a first leader peptide that allows the protein to enter easily into cells. Among endogenous antioxidants, SOD constitutes the first line of natural defence against pathological effects induced by an excess of free radicals. Here, we firstly describe the effects of our rMnSOD administration on the proliferant and malignant undifferentiated human neuroblastoma SK-N-BE cell line. Moreover, we also test the effects of rMnSOD in the all trans retinoic-differentiated SK-N-BE neuron-like cells, a quiescent “not malignant” model. While rMnSOD showed an antitumor activity on proliferating cells, a poor sensitivity to rMnSOD overload in retinoid-differentiated neuron-like cells was observed. However, in the latter case, in presence of experimental-induced oxidative stress, overcharge of rMnSOD enhanced the oxidant effects, through an increase of H2O2 due to low activity of both catalase and glutathione peroxidase. In conclusion, our data show that rMnSOD treatment exerts differential effects, which depend upon both cell differentiation and redox balance, addressing attention to the potential use of the recombinant enzyme on differentiated neurons. These facts ultimately pave the way for further preclinical studies aimed at evaluation of rMnSOD effects in models of neurodegenerative diseases.

Keywords

Recombinant human manganese superoxide dismutase Oxidative stress Free radicals SK-N-BE Neurodegeneration 

Abbreviations

ATRA

All-trans retinoic acid

Beta-amyloid peptide

CAT

Catalase

Cy

Cyanine

DHE

Dihydroethidium

Glu

Glutamic acid

GSH-px

Glutathione peroxidase

MQ

Menadione quinone

MTT

3-[3,4-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide

ROS

Reactive oxygen species

rMnSOD

Recombinant manganese superoxide dismutase

Notes

Acknowledgements

This work was partially supported by Lega Italiana (Na) per la Lotta Contro i Tumori (LILT). Authors thank Mirko Morrone for its technical help to the experimental activity.

Author Contributions

AC designed and performed experiments, analyzed data and wrote the manuscript; MLG, MS and RR performed experiments; RV, LR and PP contributed to the interpretation of results and made manuscript revisions; AB and AM provided essential materials; AmC conceived the study and wrote the manuscript. All authors read and approved the manuscript.

Compliance with Ethical Standards

Conflict of interest

AM is the founder of Laedhexa Biotechnologies Inc. The others authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

  1. 1.
    Andersen JK (2004) Oxidative stress in neurodegeneration: cause or consequence? Nat Med 10(Suppl):S18–S25CrossRefGoogle Scholar
  2. 2.
    Weisiger RA, Fridovich I (1973) Mitochondrial superoxide dismutase. Site of synthesis and intramitochondrial localization. J Biol Chem 248:4793–4796PubMedGoogle Scholar
  3. 3.
    Esworthy RS, Ho YS, Chu FF (1997) The Gpx1 gene encodes mitochondrial glutathione peroxidase in the mouse liver. Arch Biochem Biophys 340:59–63CrossRefGoogle Scholar
  4. 4.
    Holmgren A (1985) Thioredoxin. Annu Rev Biochem 54:237–271CrossRefGoogle Scholar
  5. 5.
    Zelko IN, Mariani TJ, Folz RJ (2002) Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Med 33:337–349CrossRefGoogle Scholar
  6. 6.
    Li Y, Copin JC, Reola LF, Calagui B, Gobbel GT, Chen SF, Sato S, Epstein CJ, Chan PH (1998) Reduced mitochondrial manganese-superoxide dismutase activity exacerbates glutamate toxicity in cultured mouse cortical neurons. Brain Res 814:164–170CrossRefGoogle Scholar
  7. 7.
    Melov S, Coskun P, Patel M, Tuinstra R, Cottrell B, Jun AS, Zastawny TH, Dizdaroglu M, Goodman SI, Huang TT, Miziorko H, Epstein CJ, Wallace DC (1999) Mitochondrial disease in superoxide dismutase 2 mutant mice. Proc Natl Acad Sci USA 96:846–851CrossRefGoogle Scholar
  8. 8.
    Keller JN, Kindy MS, Holtsberg FW, St Clair DK, Yen HC, Germeyer A, Steiner SM, Bruce-Keller AJ, Hutchins JB, Mattson MP (1998) Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J Neurosci 18:687–697CrossRefGoogle Scholar
  9. 9.
    Epperly MW, Sikora CA, DeFilippi SJ, Gretton JA, Zhan Q, Kufe DW, Greenberger JS (2002) Manganese superoxide dismutase (SOD2) inhibits radiation-induced apoptosis by stabilization of the mitochondrial membrane. Radiat Res 157:568–577CrossRefGoogle Scholar
  10. 10.
    Mohr A, Buneker C, Gough RP, Zwacka RM (2008) MnSOD protects colorectal cancer cells from TRAIL-induced apoptosis by inhibition of Smac/DIABLO release. Oncogene 27:763–774CrossRefGoogle Scholar
  11. 11.
    Mattson MP, Goodman Y, Luo H, Fu W, Furukawa K (1997) Activation of NF-kappaB protects hippocampal neurons against oxidative stress-induced apoptosis: evidence for induction of manganese superoxide dismutase and suppression of peroxynitrite production and protein tyrosine nitration. J Neurosci Res 49:681–697CrossRefGoogle Scholar
  12. 12.
    Wong GH, Goeddel DV (1988) Induction of manganous superoxide dismutase by tumor necrosis factor: possible protective mechanism. Science 242:941–944CrossRefGoogle Scholar
  13. 13.
    Li Y, Huang TT, Carlson EJ, Melov S, Ursell PC, Olson JL, Noble LJ, Yoshimura MP, Berger C, Chan PH, Wallace DC, Epstein CJ (1995) Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet 11:376–381CrossRefGoogle Scholar
  14. 14.
    Bonello S, Zahringer C, BelAiba RS, Djordjevic T, Hess J, Michiels C, Kietzmann T, Gorlach A (2007) Reactive oxygen species activate the HIF-1alpha promoter via a functional NFkappaB site. Arterioscler Thromb Vasc Biol 27:755–761CrossRefGoogle Scholar
  15. 15.
    Mazzetti AP, Fiorile MC, Primavera A, Lo Bello M (2015) Glutathione transferases and neurodegenerative diseases. Neurochem Int 82:10–18CrossRefGoogle Scholar
  16. 16.
    Mancini A, Borrelli A, Schiattarella A, Fasano S, Occhiello A, Pica A, Sehr P, Tommasino M, Nuesch JP, Rommelaere J (2006) Tumor suppressive activity of a variant isoform of manganese superoxide dismutase released by a human liposarcoma cell line. Int J Cancer 119:932–943CrossRefGoogle Scholar
  17. 17.
    Mancini A, Borrelli A, Masucci MT, Schiattarella A, Filice S, Rashan J, Maggino T (2000) A conditioned medium from a human liposarcoma-derived cell line induces p53-dependent apoptosis in several tumor cell lines. Oncol Rep 7:629–637PubMedGoogle Scholar
  18. 18.
    Mancini A, Borrelli A, Schiattarella A, Aloj L, Aurilio M, Morelli F, Pica A, Occhiello A, Lorizio R, Mancini R, Sica A, Mazzarella L, Sica F, Grieco P, Novellino E, Pagnozzi D, Pucci P, Rommelaere J (2008) Biophysical and biochemical characterization of a liposarcoma-derived recombinant MnSOD protein acting as an anticancer agent. Int J Cancer 123:2684–2695CrossRefGoogle Scholar
  19. 19.
    Borrelli A, Schiattarella A, Mancini R, Pica A, Pollio ML, Ruggiero MG, Bonelli P, De Luca V, Tuccillo FM, Capasso C, Gori E, Sanseverino M, Carpentieri A, Birolo L, Pucci P, Rommelaere J, Mancini A (2016) A new hexapeptide from the leader peptide of rMnSOD enters cells through the oestrogen receptor to deliver therapeutic molecules. Sci Rep 6:18691CrossRefGoogle Scholar
  20. 20.
    Borrelli A, Schiattarella A, Mancini R, Morrica B, Cerciello V, Mormile M, d’Alesio V, Bottalico L, Morelli F, D’Armiento M, D’Armiento FP, Mancini A (2009) A recombinant MnSOD is radioprotective for normal cells and radiosensitizing for tumor cells. Free Radic Biol Med 46:110–116CrossRefGoogle Scholar
  21. 21.
    Guillaume M, Rodriguez-Vilarrupla A, Gracia-Sancho J, Rosado E, Mancini A, Bosch J, Garcia-Pagan JC (2013) Recombinant human manganese superoxide dismutase reduces liver fibrosis and portal pressure in CCl4-cirrhotic rats. J Hepatol 58:240–246CrossRefGoogle Scholar
  22. 22.
    D’Alessio A, De Vita G, Cali G, Nitsch L, Fusco A, Vecchio G, Santelli G, Santoro M, de Franciscis V (1995) Expression of the RET oncogene induces differentiation of SK-N-BE neuroblastoma cells. Cell Growth Differ 6:1387–1394PubMedGoogle Scholar
  23. 23.
    Leotta CG, Federico C, Brundo MV, Tosi S, Saccone S (2014) HLXB9 gene expression, and nuclear location during in vitro neuronal differentiation in the SK-N-BE neuroblastoma cell line. PLoS ONE 9:e105481CrossRefGoogle Scholar
  24. 24.
    Frey T (1997) Correlated flow cytometric analysis of terminal events in apoptosis reveals the absence of some changes in some model systems. Cytometry 28:253–263CrossRefGoogle Scholar
  25. 25.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63CrossRefGoogle Scholar
  26. 26.
    Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474CrossRefGoogle Scholar
  27. 27.
    Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126CrossRefGoogle Scholar
  28. 28.
    Awasthi YC, Beutler E, Srivastava SK (1975) Purification and properties of human erythrocyte glutathione peroxidase. J Biol Chem 250(13):5144–5149PubMedGoogle Scholar
  29. 29.
    Orr WC, Sohal RS (2003) Does overexpression of Cu, Zn-SOD extend life span in Drosophila melanogaster? Exp Gerontol 38:227–230CrossRefGoogle Scholar
  30. 30.
    Nitti M, Furfaro AL, Cevasco C, Traverso N, Marinari UM, Pronzato MA, Domenicotti C (2010) PKC delta and NADPH oxidase in retinoic acid-induced neuroblastoma cell differentiation. Cell Signal 22:828–835CrossRefGoogle Scholar
  31. 31.
    Silvis AM, McCormick ML, Spitz DR, Kiningham KK (2016) Redox balance influences differentiation status of neuroblastoma in the presence of all-trans retinoic acid. Redox Biol 7:88–96CrossRefGoogle Scholar
  32. 32.
    Kritis AA, Stamoula EG, Paniskaki KA, Vavilis TD (2015) Researching glutamate - induced cytotoxicity in different cell lines: a comparative/collective analysis/study. Front Cell Neurosci 9:91CrossRefGoogle Scholar
  33. 33.
    Baran I, Ionescu D, Filippi A, Mocanu MM, Iftime A, Babes R, Tofolean IT, Irimia R, Goicea A, Popescu V, Dimancea A, Neagu A, Ganea C (2014) Novel insights into the antiproliferative effects and synergism of quercetin and menadione in human leukemia Jurkat T cells. Leuk Res 38(7):836–849CrossRefGoogle Scholar
  34. 34.
    Lortz S, Gurgul-Convey E, Lenzen S, Tiedge M (2005) Importance of mitochondrial superoxide dismutase expression in insulin-producing cells for the toxicity of reactive oxygen species and proinflammatory cytokines. Diabetologia 48:1541–1548CrossRefGoogle Scholar
  35. 35.
    Fukui M, Song JH, Choi J, Choi HJ, Zhu BT (2009) Mechanism of glutamate-induced neurotoxicity in HT22 mouse hippocampal cells. Eur J Pharmacol 617:1–11CrossRefGoogle Scholar
  36. 36.
    Pica A, Di Santi A, D’Angelo V, Iannotta A, Ramaglia M, Di Martino M, Pollio ML, Schiattarella A, Borrelli A, Mancini A, Indolfi P, Casale F (2015) Effect of rMnSOD on survival signaling in pediatric high risk T-cell acute lymphoblastic leukaemia. J Cell Physiol 230:1086–1093CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Alessio Crestini
    • 1
  • Rosa Vona
    • 2
  • Maria Lo Giudice
    • 1
  • Marco Sbriccoli
    • 1
  • Paola Piscopo
    • 1
  • Antonella Borrelli
    • 3
  • Roberto Rivabene
    • 1
  • Laura Ricceri
    • 4
  • Aldo Mancini
    • 5
  • Annamaria Confaloni
    • 1
    Email author return OK on get
  1. 1.Department of NeuroscienceItalian National Institute of HealthRomeItaly
  2. 2.Biomarkers Unit, Center for Gender-Specific MedicineItalian National Institute of HealthRomeItaly
  3. 3.Molecular Biology and Viral Oncology Unit, Department of Experimental OncologyIstituto Nazionale Tumori, “Fondazione G. Pascale”, IRCCSNaplesItaly
  4. 4.Centre for Behavioural Sciences and Mental HealthItalian National Institute of HealthRomeItaly
  5. 5.Leadhexa Biotechnologies Inc.San FranciscoUSA

Personalised recommendations