Advertisement

Neurochemical Research

, Volume 44, Issue 3, pp 692–702 | Cite as

Susceptibility to Aβo and TBOA of LTD and Extrasynaptic NMDAR-Dependent Tonic Current in the Aged Rat Hippocampus

  • Patrick Dutar
  • Brigitte PotierEmail author
Original Paper

Abstract

Aging, as the major risk factor of Alzheimer’s disease (AD), may increase susceptibility to neurodegenerative diseases through many gradual molecular and biochemical changes. Extracellular glutamate homeostasis and extrasynaptic glutamate N-methyl-D-aspartate receptors (NMDAR) are among early synaptic targets of oligomeric amyloid β (Aβo), one of the AD related synaptotoxic protein species. In this study, we asked for the effects of Aβo on long-term depression (LTD), a form of synaptic plasticity dependent on extrasynaptic NMDAR activation, and on a tonic current (TC) resulting from the activation of extrasynaptic NMDAR by ambient glutamate in hippocampal slices from young (3–6-month-old) and aged (24–28-month-old) Sprague–Dawley rats. Aβo significantly enhanced the magnitude of LTD and the amplitude of TC in aged slices compared to young ones. TBOA, a glutamate transporter inhibitor, also significantly increased LTD magnitude and TC amplitude in slices from aged rats, suggesting either an age-related weakness of the glutamate clearance system and/or a facilitated extrasynaptic NMDAR activation. From our present data, we hypothesize that senescence-related impairment of the extrasynaptic environment may be a vector of vulnerability of the aged hippocampus to neurodegenerative promotors such as Aβo.

Keywords

Aging Tonic current Extracellular glutamate Synaptic plasticity NMDA receptors Alzheimer 

Notes

Acknowledgements

This work was supported in part by INSERM. The authors are grateful to the animal caretakers of the CPN.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Barnes CA (1979) Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J Comp Physiol Psychol 93:74–104CrossRefPubMedGoogle Scholar
  2. 2.
    Barnes CA, McNaughton BL (1985) An age comparison of the rates of acquisition and forgetting of spatial information in relation to long-term enhancement of hippocampal synapses. Behav Neurosci 99:1040–1048CrossRefPubMedGoogle Scholar
  3. 3.
    Burke SN, Barnes CA (2006) Neural plasticity in the ageing brain. Nat Rev Neurosci 7:30–40CrossRefPubMedGoogle Scholar
  4. 4.
    Rosenzweig ES, Barnes CA (2003) Impact of aging on hippocampal function: plasticity, network dynamics, and cognition. Prog Neurobiol 69:143–179CrossRefPubMedGoogle Scholar
  5. 5.
    Collingridge GL, Peineau S, Howland JG, Wang YT (2010) Long-term depression in the CNS. Nat Rev Neurosci 11:459–473CrossRefPubMedGoogle Scholar
  6. 6.
    Foster TC (2012) Dissecting the age-related decline on spatial learning and memory tasks in rodent models: N-methyl-D-aspartate receptors and voltage-dependent Ca2 + channels in senescent synaptic plasticity. Prog Neurobiol 96:283–303CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Billard JM, Rouaud E (2007) Deficit of NMDA receptor activation in CA1 hippocampal area of aged rats is rescued by D-cycloserine. Eur J Neurosci 25:2260–2268CrossRefPubMedGoogle Scholar
  8. 8.
    Kollen M, Stephan A, Faivre-Bauman A, Loudes C, Sinet PM, Alliot J, Billard JM, Epelbaum J, Dutar P, Jouvenceau A (2010) Preserved memory capacities in aged Lou/C/Jall rats. Neurobiol Aging 31:129–142CrossRefPubMedGoogle Scholar
  9. 9.
    Lee HK, Min SS, Gallagher M, Kirkwood A (2005) NMDA receptor-independent long-term depression correlates with successful aging in rats. Nat Neurosci 8:1657–1659CrossRefPubMedGoogle Scholar
  10. 10.
    Massey PV, Johnson BE, Moult PR, Auberson YP, Brown MW, Molnar E, Collingridge GL, Bashir ZI (2004) Differential roles of NR2A and NR2B-containing NMDA receptors in cortical long-term potentiation and long-term depression. J Neurosci 24:7821–7828CrossRefPubMedGoogle Scholar
  11. 11.
    Liu DD, Yang Q, Li ST (2013) Activation of extrasynaptic NMDA receptors induces LTD in rat hippocampal CA1 neurons. Brain Res Bull 93:10–16CrossRefPubMedGoogle Scholar
  12. 12.
    Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105CrossRefPubMedGoogle Scholar
  13. 13.
    Tzingounis AV, Wadiche JI (2007) Glutamate transporters: confining runaway excitation by shaping synaptic transmission. Nat Rev Neurosci 8:935–947CrossRefPubMedGoogle Scholar
  14. 14.
    Cotrina ML, Nedergaard M (2002) Astrocytes in the aging brain. J Neurosci Res 67:1–10CrossRefPubMedGoogle Scholar
  15. 15.
    Jiang T, Cadenas E (2014) Astrocytic metabolic and inflammatory changes as a function of age. Aging Cell 13:1059–1067CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Najlerahim A, Francis PT, Bowen DM (1990) Age-related alteration in excitatory amino acid neurotransmission in rat brain. Neurobiol Aging 11:155–158CrossRefPubMedGoogle Scholar
  17. 17.
    Saransaari P, Oja SS (1995) Age-related changes in the uptake and release of glutamate and aspartate in the mouse brain. Mech Ageing Dev 81:61–71CrossRefPubMedGoogle Scholar
  18. 18.
    Vatassery GT, Lai JC, Smith WE, Quach HT (1998) Aging is associated with a decrease in synaptosomal glutamate uptake and an increase in the susceptibility of synaptosomal vitamin E to oxidative stress. Neurochem Res 23:121–125CrossRefPubMedGoogle Scholar
  19. 19.
    Wheeler DD, Ondo JG (1986) Time course of the aging of the high affinity L-glutamate transporter in rat cortical synaptosomes. Exp Gerontol 21:159–168CrossRefPubMedGoogle Scholar
  20. 20.
    Nickell J, Salvatore MF, Pomerleau F, Apparsundaram S, Gerhardt GA (2007) Reduced plasma membrane surface expression of GLAST mediates decreased glutamate regulation in the aged striatum. Neurobiol Aging 28:1737–1748CrossRefPubMedGoogle Scholar
  21. 21.
    Potier B, Billard JM, Riviere S, Sinet PM, Denis I, Champeil-Potokar G, Grintal B, Jouvenceau A, Kollen M, Dutar P (2010) Reduction in glutamate uptake is associated with extrasynaptic NMDA and metabotropic glutamate receptor activation at the hippocampal CA1 synapse of aged rats. Aging Cell 9:722–735CrossRefPubMedGoogle Scholar
  22. 22.
    Latour A, Grintal B, Champeil-Potokar G, Hennebelle M, Lavialle M, Dutar P, Potier B, Billard JM, Vancassel S, Denis I (2013) Omega-3 fatty acids deficiency aggravates glutamatergic synapse and astroglial aging in the rat hippocampal CA1. Aging Cell 12:76–84CrossRefPubMedGoogle Scholar
  23. 23.
    Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, Hansen LA, Katzman R (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580CrossRefPubMedGoogle Scholar
  24. 24.
    McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K, Bush AI, Masters CL (1999) Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann Neurol 46:860–866CrossRefPubMedGoogle Scholar
  25. 25.
    Selkoe DJ (2002) Deciphering the genesis and fate of amyloid beta-protein yields novel therapies for Alzheimer disease. J Clin Invest 110:1375–1381CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Hsia AY, Masliah E, McConlogue L, Yu GQ, Tatsuno G, Hu K, Kholodenko D, Malenka RC, Nicoll RA, Mucke L (1999) Plaque-independent disruption of neural circuits in Alzheimer’s disease mouse models. Proc Natl Acad Sci U S A 96:3228–3233CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Mucke L, Masliah E, Yu GQ, Mallory M, Rockenstein EM, Tatsuno G, Hu K, Kholodenko D, Johnson-Wood K, McConlogue L (2000) High-level neuronal expression of abeta 1–42 in wild-type human amyloid protein precursor transgenic mice: synaptotoxicity without plaque formation. J Neurosci 20:4050–4058CrossRefPubMedGoogle Scholar
  28. 28.
    Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, Brett FM, Farrell MA, Rowan MJ, Lemere CA, Regan CM, Walsh DM, Sabatini BL, Selkoe DJ (2008) Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14:837–842CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kim JH, Anwyl R, Suh YH, Djamgoz MB, Rowan MJ (2001) Use-dependent effects of amyloidogenic fragments of (beta)-amyloid precursor protein on synaptic plasticity in rat hippocampus in vivo. J Neurosci 21:1327–1333CrossRefPubMedGoogle Scholar
  30. 30.
    Li S, Hong S, Shepardson NE, Walsh DM, Shankar GM, Selkoe D (2009) Soluble oligomers of amyloid beta protein facilitate hippocampal long-term depression by disrupting neuronal glutamate uptake. Neuron 62:788–801CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Huang S, Tong H, Lei M, Zhou M, Guo W, Li G, Tang X, Li Z, Mo M, Zhang X, Chen X, Cen L, Wei L, Xiao Y, Li K, Huang Q, Yang X, Liu W, Zhang L, Qu S, Li S, Xu P (2018) Astrocytic glutamatergic transporters are involved in Aβ-induced synaptic dysfunction. Brain Res 1678:129–137CrossRefPubMedGoogle Scholar
  32. 32.
    Kervern M, Angeli A, Nicole O, Leveille F, Parent B, Villette V, Buisson A, Dutar P (2012) Selective impairment of some forms of synaptic plasticity by oligomeric amyloid-beta peptide in the mouse hippocampus: implication of extrasynaptic NMDA receptors. J Alzheimers Dis 32:183–196CrossRefPubMedGoogle Scholar
  33. 33.
    Minogue AM, Lynch AM, Loane DJ, Herron CE, Lynch MA (2007) Modulation of amyloid-beta-induced and age-associated changes in rat hippocampus by eicosapentaenoic acid. J Neurochem 103:914–926CrossRefPubMedGoogle Scholar
  34. 34.
    Le Meur K, Galante M, Angulo MC, Audinat E (2007) Tonic activation of NMDA receptors by ambient glutamate of non-synaptic origin in the rat hippocampus. J Physiol 580:373–383CrossRefPubMedGoogle Scholar
  35. 35.
    Audrain M, Fol R, Dutar P, Potier B, Billard JM, Flament J, Alves S, Burlot MA, Dufayet-Chaffaud G, Bemelmans AP, Valette J, Hantraye P, Deglon N, Cartier N, Braudeau J (2016) Alzheimer’s disease-like APP processing in wild-type mice identifies synaptic defects as initial steps of disease progression. Mol Neurodegener 11:016–0070CrossRefGoogle Scholar
  36. 36.
    Anderson WW, Collingridge GL (2007) Capabilities of the WinLTP data acquisition program extending beyond basic LTP experimental functions. J Neurosci Methods 162:346–356CrossRefPubMedGoogle Scholar
  37. 37.
    Klein WL (2002) Aβ toxicity in Alzheimer’s disease: globular oligomers (ADDLs) as new vaccine and drug targets. Neurochem Int 41:345–352CrossRefPubMedGoogle Scholar
  38. 38.
    Puzzo D, Privitera L, Palmeri A (2012) Hormetic effect of amyloid-beta peptide in synaptic plasticity and memory. Neurobiol Aging 33:1484.e1415-1484.e1424CrossRefPubMedGoogle Scholar
  39. 39.
    Spires-Jones TL, Hyman BT (2014) The intersection of amyloid beta and tau at synapses in Alzheimer’s disease. Neuron 82:756–771CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Takamura Y, Ono K, Matsumoto J, Yamada M, Nishijo H (2014) Effects of the neurotrophic agent T-817MA on oligomeric amyloid-beta-induced deficits in long-term potentiation in the hippocampal CA1 subfield. Neurobiol Aging 35:532–536CrossRefPubMedGoogle Scholar
  41. 41.
    Hsieh H, Boehm J, Sato C, Iwatsubo T, Tomita T, Sisodia S, Malinow R (2006) AMPAR removal underlies Abeta-induced synaptic depression and dendritic spine loss. Neuron 52:831–843CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Talantova M, Sanz-Blasco S, Zhang X, Xia P, Akhtar MW, Okamoto S, Dziewczapolski G, Nakamura T, Cao G, Pratt AE, Kang YJ, Tu S, Molokanova E, McKercher SR, Hires SA, Sason H, Stouffer DG, Buczynski MW, Solomon JP, Michael S, Powers ET, Kelly JW, Roberts A, Tong G, Fang-Newmeyer T, Parker J, Holland EA, Zhang D, Nakanishi N, Chen HS, Wolosker H, Wang Y, Parsons LH, Ambasudhan R, Masliah E, Heinemann SF, Pina-Crespo JC, Lipton SA (2013) Abeta induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss. Proc Natl Acad Sci U S A 110:17CrossRefGoogle Scholar
  43. 43.
    Villette V, Dutar P (2017) GABAergic microcircuits in Alzheimer’s disease models. Curr Alzheimer Res 14:30–39CrossRefPubMedGoogle Scholar
  44. 44.
    Zhao LN, Long H, Mu Y, Chew LY (2012) the toxicity of amyloid β oligomers. Int J Mol Sci 13:7303–7327CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Ondrejcak T, Klyubin I, Hu N-W, Barry AE, Cullen WK, Rowan MJ (2010) Alzheimer’s disease amyloid β-protein and synaptic function. NeuroMol Med 12:13–26CrossRefGoogle Scholar
  46. 46.
    Povysheva NV, Johnson JW (2012) tonic NMDA receptor-mediated current in prefrontal cortical pyramidal cells and fast-spiking interneurons. J Neurophysiol 107:2232–2243CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Rozovsky I, Finch CE, Morgan TE (1998) Age-related activation of microglia and astrocytes: in vitro studies show persistent phenotypes of aging, increased proliferation, and resistance to down-regulation. Neurobiol Aging 19:97–103CrossRefPubMedGoogle Scholar
  48. 48.
    Schipper HM (1996) Astrocytes, brain aging, and neurodegeneration. Neurobiol Aging 17:467–480CrossRefPubMedGoogle Scholar
  49. 49.
    Sykova E, Mazel T, Hasenohrl RU, Harvey AR, Simonova Z, Mulders WH, Huston JP (2002) Learning deficits in aged rats related to decrease in extracellular volume and loss of diffusion anisotropy in hippocampus. Hippocampus 12:269–279CrossRefPubMedGoogle Scholar
  50. 50.
    Sykova E, Vorisek I, Mazel T, Antonova T, Schachner M (2005) Reduced extracellular space in the brain of tenascin-R- and HNK-1-sulphotransferase deficient mice. Eur J Neurosci 22:1873–1880CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre de Psychiatrie et de Neurosciences, INSERM U894Université Paris-DescartesParisFrance
  2. 2.Laboratoire Aimé Cotton, ENS-Cachan, CNRS, Univ. Paris-SudUniversité Paris-SaclayOrsayFrance

Personalised recommendations