Advertisement

Distinct Cytokine and Chemokine Expression in Plasma and Calpeptin-Treated PBMCs of a Relapsing-Remitting Multiple Sclerosis Patient: A Case Report

  • Raghavendar Chandran
  • Mollie Capone
  • Denise Matzelle
  • Rachel Polcyn
  • Elizabeth Kau
  • Azizul Haque
  • Naren L. Banik
Short Communication

Abstract

The cytokine/chemokine expression signature of a 60-year-old African American male with relapsing-remitting multiple sclerosis (RRMS) was analyzed using patient blood samples obtained from two separate visits to the clinic. Thirty-six different cytokines, chemokines, and growth factors were detected in the plasma of the RRMS patient using a multiplexed bead-based immunoassay. Results indicated that at least ten of these factors with a concentration of > 100 pg/mL are identified as pro-inflammatory. Calpain inhibition led to an anti-inflammatory effect, as indicated by a decrease in expression of pro-inflammatory cytokines/chemokines such as GM-CSF, IFNγ, and IL-17A, and a relative increase in two of the anti-inflammatory cytokines (IL-13 and IL-4) in the peripheral blood mononuclear cells activated with anti-CD3/CD28. Overall, these results suggest that the unique cytokine/chemokine pattern observed in the plasma of the RRMS patient can be used as a prognostic marker and calpain inhibition may be used as a novel therapeutic strategy for treating excessive inflammatory response specific to RRMS patients.

Keywords

Relapsing-remitting multiple sclerosis Calpain Cytokines Chemokines Plasma Peripheral blood mononuclear cells 

Notes

Acknowledgements

This work was supported in part by funding Veterans Administration (1I01BX002349-01); Department of Neurosurgery, MUSC, and MUSC-CTSA program; and the South Carolina State Spinal Cord Research Fund (SCIRF-2015P-01, SCIRF-2015P-04, SCIRF-2015-I-01, SCIRF-2016 I-03). Contents do not necessarily represent the policy of the SCIRF and do not imply endorsement by the funding agency.

Author Contributions

RC wrote the manuscript and drew the Figures and Tables. MC performed the experiments. DM coordinated patient study, collected samples, and edited the manuscript. AH conceived and designed the experiments and the manuscript. NB conceived and designed the manuscript. AH and NB also edited the manuscript. EK provided patient samples and case history. All authors reviewed and approved the final version of the manuscript.

Compliance with Ethical Standards

Conflict of interest

The authors have no financial conflicts of interest.

References

  1. 1.
    Amedei A, Prisco D, D’Elios MM (2012) Multiple sclerosis: the role of cytokines in pathogenesis and in therapies. Int J Mol Sci 13(10):13438–13460CrossRefGoogle Scholar
  2. 2.
    Tullman MJ (2013) Overview of the epidemiology, diagnosis, and disease progression associated with multiple sclerosis. Am J Managed Care 19(2 Suppl):S15–S20Google Scholar
  3. 3.
    Lublin FD (2014) New multiple sclerosis phenotypic classification. Eur Neurol 72(Suppl 1):1–5CrossRefGoogle Scholar
  4. 4.
    Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sorensen PS, Thompson AJ et al (2014) Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology 83(3):278–286CrossRefGoogle Scholar
  5. 5.
    Trager N, Butler JT, Haque A, Ray SK, Beeson C, Banik NL (2013) The involvement of calpain in CD4(+) T helper cell bias in multple sclerosis. J Clin Cell Immunol 4(4):1000153CrossRefGoogle Scholar
  6. 6.
    Dendrou CA, Fugger L (2017) Immunomodulation in multiple sclerosis: promises and pitfalls. Curr Opin Immunol 49:37–43CrossRefGoogle Scholar
  7. 7.
    Dendrou CA, Fugger L, Friese MA (2015) Immunopathology of multiple sclerosis. Nat Rev Immunol 15(9):545–558CrossRefGoogle Scholar
  8. 8.
    Dargahi N, Katsara M, Tselios T, Androutsou ME, de Courten M, Matsoukas J et al (2017) Multiple sclerosis: immunopathology and treatment update. Brain Sci 7(7):78CrossRefGoogle Scholar
  9. 9.
    Wiendl H, Toyka KV, Rieckmann P, Gold R, Hartung HP, Hohlfeld R (2008) Basic and escalating immunomodulatory treatments in multiple sclerosis: current therapeutic recommendations. J Neurol 255(10):1449–1463CrossRefGoogle Scholar
  10. 10.
    Ellwardt E, Zipp F (2014) Molecular mechanisms linking neuroinflammation and neurodegeneration in MS. Exp Neurol 262(Pt A):8–17CrossRefGoogle Scholar
  11. 11.
    Schaecher KE, Shields DC, Banik NL (2001) Mechanism of myelin breakdown in experimental demyelination: a putative role for calpain. Neurochem Res 26(6):731–737CrossRefGoogle Scholar
  12. 12.
    Shields DC, Schaecher KE, Saido TC, Banik NL (1999) A putative mechanism of demyelination in multiple sclerosis by a proteolytic enzyme, calpain. Proc Natl Acad Sci USA 96(20):11486–11491CrossRefGoogle Scholar
  13. 13.
    Shields DC, Banik NL (1999) Pathophysiological role of calpain in experimental demyelination. J Neurosci Res 55(5):533–541CrossRefGoogle Scholar
  14. 14.
    Guyton MK, Das A, Samantaray S, Wallace GC, Butler JT, Ray SK et al (2010) Calpeptin attenuated inflammation, cell death, and axonal damage in animal model of multiple sclerosis. J Neurosci Res 88(11):2398–2408PubMedPubMedCentralGoogle Scholar
  15. 15.
    Podbielska M, Das A, Smith AW, Chauhan A, Ray SK, Inoue J et al (2016) Neuron-microglia interaction induced bi-directional cytotoxicity associated with calpain activation. J Neurochem 139(3):440–455CrossRefGoogle Scholar
  16. 16.
    Smith AW, Doonan BP, Tyor WR, Abou-Fayssal N, Haque A, Banik NL (2011) Regulation of Th1/Th17 cytokines and IDO gene expression by inhibition of calpain in PBMCs from MS patients. J Neuroimmunol 232(1–2):179–185CrossRefGoogle Scholar
  17. 17.
    Sullivan KE, Cutilli J, Piliero LM, Ghavimi-Alagha D, Starr SE, Campbell DE et al (2000) Measurement of cytokine secretion, intracellular protein expression, and mRNA in resting and stimulated peripheral blood mononuclear cells. Clin Diagn Lab Immunol 7(6):920–924PubMedPubMedCentralGoogle Scholar
  18. 18.
    Verhoef CM, Van Roon JA, Vianen ME, Glaudemans CA, Lafeber FP, Bijlsma JW (1999) Lymphocyte stimulation by CD3-CD28 enables detection of low T cell interferon-gamma and interleukin-4 production in rheumatoid arthritis. Scand J Immunol 50(4):427–432CrossRefGoogle Scholar
  19. 19.
    Mori F, Rossi S, Piccinin S, Motta C, Mango D, Kusayanagi H et al (2013) Synaptic plasticity and PDGF signaling defects underlie clinical progression in multiple sclerosis. J Neurosci 33(49):19112–19119CrossRefGoogle Scholar
  20. 20.
    Stampanoni Bassi M, Iezzi E, Marfia GA, Simonelli I, Musella A, Mandolesi G et al (2018) Platelet-derived growth factor predicts prolonged relapse-free period in multiple sclerosis. J Neuroinflamm 15(1):108CrossRefGoogle Scholar
  21. 21.
    Mori F, Nistico R, Nicoletti CG, Zagaglia S, Mandolesi G, Piccinin S et al (2016) RANTES correlates with inflammatory activity and synaptic excitability in multiple sclerosis. Mult Scler (Basingstoke, England). 22(11):1405–1412CrossRefGoogle Scholar
  22. 22.
    Filipovic R, Jakovcevski I, Zecevic N (2003) GRO-alpha and CXCR2 in the human fetal brain and multiple sclerosis lesions. Dev Neurosci 25(2–4):279–290CrossRefGoogle Scholar
  23. 23.
    Glabinski AR, Tuohy VK, Ransohoff RM (1998) Expression of chemokines RANTES, MIP-1alpha and GRO-alpha correlates with inflammation in acute experimental autoimmune encephalomyelitis. Neuroimmunomodulation 5(3–4):166–171CrossRefGoogle Scholar
  24. 24.
    Masuda H, Mori M, Uchida T, Uzawa A, Ohtani R, Kuwabara S (2017) Soluble CD40 ligand contributes to blood-brain barrier breakdown and central nervous system inflammation in multiple sclerosis and neuromyelitis optica spectrum disorder. J Neuroimmunol 305:102–107CrossRefGoogle Scholar
  25. 25.
    Masuda H, Mori M, Umehara K, Furihata T, Uchida T, Uzawa A et al (2018) Soluble CD40 ligand disrupts the blood-brain barrier and exacerbates inflammation in experimental autoimmune encephalomyelitis. J Neuroimmunol 316:117–120CrossRefGoogle Scholar
  26. 26.
    Shields DC, Tyor WR, Deibler GE, Banik NL (1998) Increased calpain expression in experimental demyelinating optic neuritis: an immunocytochemical study. Brain Res 784(1–2):299–304CrossRefGoogle Scholar
  27. 27.
    Shields DC, Tyor WR, Deibler GE, Hogan EL, Banik NL (1998) Increased calpain expression in activated glial and inflammatory cells in experimental allergic encephalomyelitis. Proc Natl Acad Sci USA 95(10):5768–5772CrossRefGoogle Scholar
  28. 28.
    Shields DC, Banik NL (1998) Upregulation of calpain activity and expression in experimental allergic encephalomyelitis: a putative role for calpain in demyelination. Brain Res 794(1):68–74CrossRefGoogle Scholar
  29. 29.
    Schaecher K, Rocchini A, Dinkins J, Matzelle DD, Banik NL (2002) Calpain expression and infiltration of activated T cells in experimental allergic encephalomyelitis over time: increased calpain activity begins with onset of disease. J Neuroimmunol 129(1–2):1–9CrossRefGoogle Scholar
  30. 30.
    Shields DC, Schaecher KE, Goust JM, Banik NL (1999) Calpain activity and expression are increased in splenic inflammatory cells associated with experimental allergic encephalomyelitis. J Neuroimmunol 99(1):1–12CrossRefGoogle Scholar
  31. 31.
    Das A, Guyton MK, Matzelle DD, Ray SK, Banik NL (2008) Time-dependent increases in protease activities for neuronal apoptosis in spinal cords of Lewis rats during development of acute experimental autoimmune encephalomyelitis. J Neurosci Res 86(13):2992–3001CrossRefGoogle Scholar
  32. 32.
    Imam SA, Guyton MK, Haque A, Vandenbark A, Tyor WR, Ray SK et al (2007) Increased calpain correlates with Th1 cytokine profile in PBMCs from MS patients. J Neuroimmunol 190(1–2):139–145CrossRefGoogle Scholar
  33. 33.
    Trager N, Smith A, Wallace G IV, Azuma M, Inoue J, Beeson C et al (2014) Effects of a novel orally administered calpain inhibitor SNJ-1945 on immunomodulation and neurodegeneration in a murine model of multiple sclerosis. J Neurochem 130(2):268–279CrossRefGoogle Scholar
  34. 34.
    Samantaray S, Knaryan VH, Shields DC, Cox AA, Haque A, Banik NL (2015) Inhibition of calpain activation protects MPTP-induced nigral and spinal cord neurodegeneration, reduces inflammation, and improves gait dynamics in mice. Mol Neurobiol 52(2):1054–1066CrossRefGoogle Scholar
  35. 35.
    Samantaray S, Knaryan VH, Le Gal C, Ray SK, Banik NL (2011) Calpain inhibition protected spinal cord motoneurons against 1-methyl-4-phenylpyridinium ion and rotenone. Neuroscience 192:263–274CrossRefGoogle Scholar
  36. 36.
    Smith AW, Rohrer B, Wheless L, Samantaray S, Ray SK, Inoue J et al (2016) Calpain inhibition reduces structural and functional impairment of retinal ganglion cells in experimental optic neuritis. J Neurochem 139(2):270–284CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Raghavendar Chandran
    • 1
  • Mollie Capone
    • 1
    • 2
  • Denise Matzelle
    • 1
    • 3
  • Rachel Polcyn
    • 2
  • Elizabeth Kau
    • 3
  • Azizul Haque
    • 2
  • Naren L. Banik
    • 1
    • 2
    • 3
  1. 1.Department of NeurosurgeryMedical University of South CarolinaCharlestonUSA
  2. 2.Department of Microbiology and Immunology, Hollings Cancer CenterMedical University of South CarolinaCharlestonUSA
  3. 3.Ralph H. Johnson Veterans Administration Medical CenterCharlestonUSA

Personalised recommendations