Advertisement

Neurochemical Research

, Volume 43, Issue 12, pp 2304–2312 | Cite as

Diallyl Trisulfide Protects Motor Neurons from the Neurotoxic Protein TDP-43 via Activating Lysosomal Degradation and the Antioxidant Response

  • Chang Liu
  • Bingquan Leng
  • Yi Li
  • Hong Jiang
  • Weisong Duan
  • Yansu Guo
  • Chunyan Li
  • Kun Hong
Original Paper

Abstract

Amyotrophic lateral sclerosis (ALS) is a rapidly progressive motor neuron disease for which only limited effective therapeutics are available. Currently, TAR DNA-binding protein 43 (TDP-43) is recognized as a pathological and biochemical marker for ALS. Increases in the levels of aggregated or mislocalized forms of TDP-43 might result in ALS pathology. Therefore, clearance pathways for intracellular protein aggregates have been suggested as potential therapeutic targets for the treatment of ALS. Here we report that treatment of motor neuron-like NSC34 cells overexpressing TDP-43 with diallyl trisulfide (DATS) induced neuronal autophagy and lysosomal clearance of TDP-43 and C-terminal TDP-43 fragments. We also observed that the antioxidant transcription factor NF-E2-related factor 2 (Nrf2) was accumulated in the nucleus and the expression of the antioxidant enzymes heme oxygenase1 (HO-1) and NAD(P)H:quinone oxidoreductase (NQO1) was increased. Consequently, DATS suppressed the increase in the levels of reactive oxygen species induced by TDP-43 expression. This study extends the findings of prior reports indicating that lower doses of DATS mediate cell survival in part by inducing autophagy and activating the Nrf2/antioxidant response element pathway.

Keywords

TDP-43 Amyotrophic lateral sclerosis Autophagy Reactive oxygen species Protein aggregation 

Notes

Acknowledgements

We thank Dr. Rugao Liu at University of Louisville, USA for the kind gift of the NSC-34 cell line. We thank Dr. Jemeen Sreedharan and Dr. Christopher E. Shaw for kind gifts of the two mutants plamids, Dr. Guanghui Wang for EGFP-TDP-25 plasmid and Dr. Leonard Petrucelli GFP-TDP-35 plasmid. We thank Yushan Zhu for his technical support. This study was supported in part by grants from the National Natural Science Foundation of China (Nos. 30900460 and 81171210) and by the Hebei Science and Technology Department (No. 11966122D). We also would like to thank Editage [http://www.editage.cn] for English language editing.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

11064_2018_2651_MOESM1_ESM.jpg (192 kb)
Supplementary material 1 (JPG 191 KB)

References

  1. 1.
    Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O’Regan JP, Deng HX et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362(6415):59–62.  https://doi.org/10.1038/362059a0 CrossRefPubMedGoogle Scholar
  2. 2.
    Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314(5796):130–133.  https://doi.org/10.1126/science.1134108 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Xu YF, Gendron TF, Zhang YJ, Lin WL, D’Alton S, Sheng H et al (2010) Wild-type human TDP-43 expression causes TDP-43 phosphorylation, mitochondrial aggregation, motor deficits, and early mortality in transgenic mice. J Neurosci 30(32):10851–10859.  https://doi.org/10.1523/JNEUROSCI.1630-10.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Crippa V, Sau D, Rusmini P, Boncoraglio A, Onesto E, Bolzoni E et al (2010) The small heat shock protein B8 (HspB8) promotes autophagic removal of misfolded proteins involved in amyotrophic lateral sclerosis (ALS). Hum Mol Genet 19(17):3440–3456.  https://doi.org/10.1093/hmg/ddq257 CrossRefPubMedGoogle Scholar
  5. 5.
    Wang X, Fan H, Ying Z, Li B, Wang H, Wang G (2010) Degradation of TDP-43 and its pathogenic form by autophagy and the ubiquitin-proteasome system. Neurosci Lett 469(1):112–116.  https://doi.org/10.1016/j.neulet.2009.11.055 CrossRefPubMedGoogle Scholar
  6. 6.
    Liu G, Coyne AN, Pei F, Vaughan S, Chaung M, Zarnescu DC, Buchan JR (2017) Endocytosis regulates TDP-43 toxicity and turnover. Nat Commun 8(1):2092.  https://doi.org/10.1038/s41467-017-02017-x CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Leibiger C, Deisel J, Aufschnaiter A, Ambros S, Tereshchenko M, Verheijen BM, Büttner S, Braun RJ (2018) Hum Mol Genet 27(9):1593–1607.  https://doi.org/10.1093/hmg/ddy066 CrossRefPubMedGoogle Scholar
  8. 8.
    Tan JM, Wong ES, Kirkpatrick DS, Pletnikova O, Ko HS, Tay SP et al (2008) Lysine 63-linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated with neurodegenerative diseases. Hum Mol Genet 17(3):431–439.  https://doi.org/10.1093/hmg/ddm320 CrossRefPubMedGoogle Scholar
  9. 9.
    Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG et al (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36(6):585–595.  https://doi.org/10.1038/ng1362 CrossRefPubMedGoogle Scholar
  10. 10.
    Lu JH, Tan JQ, Durairajan SS, Liu LF, Zhang ZH, Ma L et al (2012) Isorhynchophylline, a natural alkaloid, promotes the degradation of alpha-synuclein in neuronal cells via inducing autophagy. Autophagy 8(1):98–108.  https://doi.org/10.4161/auto.8.1.18313 CrossRefPubMedGoogle Scholar
  11. 11.
    Gomes C, Escrevente C, Costa J (2010) Mutant superoxide dismutase 1 overexpression in NSC-34 cells: effect of trehalose on aggregation, TDP-43 localization and levels of co-expressed glycoproteins. Neurosci Lett 475(3):145–149.  https://doi.org/10.1016/j.neulet.2010.03.065 CrossRefPubMedGoogle Scholar
  12. 12.
    Wang IF, Guo BS, Liu YC, Wu CC, Yang CH, Tsai KJ, Shen CK (2012) Autophagy activators rescue and alleviate pathogenesis of a mouse model with proteinopathies of the TAR DNA-binding protein 43. Proc Natl Acad Sci USA 109(37):15024–15029.  https://doi.org/10.1073/pnas.1206362109 CrossRefPubMedGoogle Scholar
  13. 13.
    Lee BC, Park BH, Kim SY, Lee YJ (2011) Role of Bim in diallyl trisulfide-induced cytotoxicity in human cancer cells. J Cell Biochem 112(1):118–127.  https://doi.org/10.1002/jcb.22896 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Powolny AA, Singh SV (2008) Multitargeted prevention and therapy of cancer by diallyl trisulfide and related allium vegetable-derived organosulfur compounds. Cancer Lett 269(2):305–314.  https://doi.org/10.1016/j.canlet.2008.05.027 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Adaki S, Adaki R, Shah K, Karagir A (2014) Garlic: review of literature. Indian J Cancer 51(4):577–581.  https://doi.org/10.4103/0019-509X.175383 CrossRefPubMedGoogle Scholar
  16. 16.
    Sun MM, Bu H, Li B, Yu JX, Guo YS, Li CY (2009) Neuroprotective potential of phase II enzyme inducer diallyl trisulfide. Neurol Res 31(1):23–27.  https://doi.org/10.1179/174313208X332959 CrossRefPubMedGoogle Scholar
  17. 17.
    Guo Y, Zhang K, Wang Q, Li Z, Yin Y, Xu Q, Duan W, Li C (2011) Neuroprotective effects of diallyl trisulfide in SOD1-G93A transgenic mouse model of amyotrophic lateral sclerosis. Brain Res 1374:110–115.  https://doi.org/10.1016/j.brainres.2010.12.014 CrossRefPubMedGoogle Scholar
  18. 18.
    Mizushima N, Yoshimori T (2007) How to interpret LC3 immunoblotting. Autophagy 3(6):542–545CrossRefGoogle Scholar
  19. 19.
    Bresciani A, Spiezia MC, Boggio R, Cariulo C, Nordheim A, Altobelli R et al (2018) Quantifying autophagy using novel LC3B and p62 TR-FRET assays. PLoS ONE 13(3):e0194423.  https://doi.org/10.1371/journal.pone.0194423 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Shacka JJ, Klocke BJ, Roth KA (2006) Autophagy, bafilomycin and cell death: the “a-B-cs” of plecomacrolide-induced neuroprotection. Autophagy 2(3):228–230CrossRefGoogle Scholar
  21. 21.
    Mauvezin C, Neufeld TP (2015) Bafilomycin A1 disrupts autophagic flux by inhibiting both V-ATPase-dependent acidification and Ca-P60A/SERCA-dependent autophagosome-lysosome fusion. Autophagy 11(8):1437–1438.  https://doi.org/10.1080/15548627.2015.1066957 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kim GH, Kim JE, Rhie SJ, Yoon S (2015) The role for oxidative stress in neurodegenerative diseases. Exp Neurobiol 24(4):325–340.  https://doi.org/10.5607/en.2015.24.4.325 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Chen S, Zhang X, Song L, Le W (2012) Autophagy dysregulation in amyotrophic lateral sclerosis. Brain Pathol 22(1):110–116.  https://doi.org/10.1111/j.1750-3639.2011.00546.x CrossRefPubMedGoogle Scholar
  24. 24.
    Deng Z, Sheehan P, Chen S, Yue Z (2017) Is amyotrophic lateral sclerosis/frontotemporal dementia an autophagy disease? Mol Neurodegener. 12(1):90.  https://doi.org/10.1186/s13024-017-0232-6 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Ramesh N, Pandey UB (2017) Autophagy dysregulation in ALS: when protein aggregates get out of hand. Front Mol Neurosci. 10:263.  https://doi.org/10.3389/fnmol.2017.00263 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Cipolat Mis MS, Brajkovic S, Frattini E, Di Fonzo A, Corti S (2016) Autophagy in motor neuron disease: key pathogenetic mechanisms and therapeutic targets. Mol Cell Neurosci 72:84–90.  https://doi.org/10.1016/j.mcn.2016.01.012 CrossRefPubMedGoogle Scholar
  27. 27.
    Nabavi SF, Sureda A, Dehpour AR, Shirooie S, Silva AS, Devi KP et al (2017) Regulation of autophagy by polyphenols: paving the road for treatment of neurodegeneration. Metab Brain Dis.  https://doi.org/10.1007/s11011-018-0214-6 CrossRefGoogle Scholar
  28. 28.
    Lee JS, Surh YJ (2005) Nrf2 as a novel molecular target for chemoprevention. Cancer Lett 224(2):171–184.  https://doi.org/10.1016/j.canlet.2004.09.042 CrossRefPubMedGoogle Scholar
  29. 29.
    Cho HY, Reddy SP, Debiase A, Yamamoto M, Kleeberger SR (2005) Gene expression profiling of NRF2-mediated protection against oxidative injury. Free Radic Biol Med 38(3):325–343.  https://doi.org/10.1016/j.freeradbiomed.2004.10.013 CrossRefPubMedGoogle Scholar
  30. 30.
    Hong K, Li Y, Duan W, Guo Y, Jiang H, Li W, Li C (2012) Full-length TDP-43 and its C-terminal fragments activate mitophagy in NSC34 cell line. Neurosci Lett, 530(2):144–149.  https://doi.org/10.1016/j.neulet.2012.10.003 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of NeurologySecond Hospital of Hebei Medical UniversityShijiazhuangChina
  2. 2.Institute of Cardiocerebrovascular DiseaseShijiazhuangChina
  3. 3.Neurological Laboratory of Hebei ProvinceShijiazhuangChina
  4. 4.Department of NeurologyRizhao Central HospitalRizhaoChina

Personalised recommendations