Skip to main content

Advertisement

Log in

Exosomes Isolated From Human Umbilical Cord Mesenchymal Stem Cells Alleviate Neuroinflammation and Reduce Amyloid-Beta Deposition by Modulating Microglial Activation in Alzheimer’s Disease

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is the most common neurodegenerative disease characterized by excessive accumulation of the amyloid-β peptide (Aβ) in the brain, which has been considered to mediate the neuroinflammation process. Microglial activation is the main component of neuroimmunoregulation. In recent years, exosomes isolated from human umbilical cord mesenchymal stem cells (hucMSC-exosomes) have been demonstrated to mimic the therapeutic effects of hucMSCs in many inflammation-related diseases. In this study, exosomes from the supernatant of hucMSCs were injected into AD mouse models. We observed that hucMSC-exosomes injection could repair cognitive disfunctions and help to clear Aβ deposition in these mice. Moreover, we found that hucMSC-exosomes injection could modulate the activation of microglia in brains of the mice to alleviated neuroinflammation. The levels of pro-inflammatory cytokines in peripheral blood and brains of mice were increased and the levels of anti-inflammatory cytokines were decreased. We also treated BV2 cells with hucMSC-exosomes in culture medium. HucMSC-exosomes also had inflammatory regulating effects to alternatively activate microglia and modulate the levels of inflammatory cytokines in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AD:

Alzheimer disease

Aβ:

Amyloid β- peptides

hucMSC-exosomes:

Exosomes isolated from human umbilical cord mesenchymal stem cells

CNS:

Central nervous system

BBB:

Blood–brain barrier

PBS:

Phosphate-buffered saline

RC:

Reagent of the control group

MWM:

Morris water-maze

PB:

Peripheral blood

TGF-β:

Transforming growth factor-β

IL-10:

Interleukin-10

TNF-α:

Tumor necrosis factor-α

IL-1β:

Interleukin-1β

ELISA:

Enzyme-linked immunosorbent assay

NEP:

Neprilysin

IDE:

Insulin-degrading enzyme

YM-1:

Chitinase 3-like 3

Arg-1:

Arginase-1

CD163:

Haptoglobin/hemoglobin scavenger receptor

FIZZ1:

Found in inflammatory zone 1

MRC1:

Mannose receptors C type 1

References

  1. Moonga J, Likupe G (2016) A systematic literature review on nurses’ and health care support workers’ experiences of caring for people with dementia on orthopaedic wards. J Clin Nurs 25(13–14):1789–1804

    Article  Google Scholar 

  2. Iwata N, Higuchi M, Saido TC (2005) Metabolism of amyloid-β peptide and Alzheimer’s disease. Pharmacol Ther 108(2):129–148

    Article  CAS  Google Scholar 

  3. Krause DL, Müller N (2010) Neuroinflammation, microglia and implications for anti-inflammatory treatment in Alzheimer’s disease. Int J Alzheimer’s Dis. https://doi.org/10.4061/2010/732806

    Article  Google Scholar 

  4. Pelekanos RA, Li J, Gongora M, Chandrakanthan V, Scown J, Suhaimi N, Brooke G, Christensen ME, Doan T, Rice AM (2012) Comprehensive transcriptome and immunophenotype analysis of renal and cardiac MSC-like populations supports strong congruence with bone marrow MSC despite maintenance of distinct identities. Stem Cell Res 8(1):58–73

    Article  CAS  Google Scholar 

  5. Weiss ML, Anderson C, Medicetty S, Seshareddy KB, Weiss RJ, VanderWerff I, Troyer D, McIntosh KR (2008) Immune properties of human umbilical cord Wharton’s jelly-derived cells. Stem Cells 26(11):2865–2874

    Article  CAS  Google Scholar 

  6. Yang H, Yang H, Xie Z, Wei L, Bi J (2013) Systemic transplantation of human umbilical cord derived mesenchymal stem cells-educated T regulatory cells improved the impaired cognition in AβPPswe/PS1dE9 transgenic mice. PLoS ONE 8(7):e69129

    Article  CAS  Google Scholar 

  7. Xie Z-H, Liu Z, Zhang X-R, Yang H, Wei L-F, Wang Y, Xu S-L, Sun L, Lai C, Bi J-Z (2016) Wharton’s Jelly-derived mesenchymal stem cells alleviate memory deficits and reduce amyloid-β deposition in an APP/PS1 transgenic mouse model. Clin Exp Med 16(1):89–98

    Article  CAS  Google Scholar 

  8. Schorey JS, Bhatnagar S (2008) Exosome function: from tumor immunology to pathogen biology. Traffic 9(6):871–881

    Article  CAS  Google Scholar 

  9. Zhang B, Shen L, Shi H, Pan Z, Wu L, Yan Y, Zhang X, Mao F, Qian H, Xu W (2016) Exosomes from human umbilical cord mesenchymal stem cells: identification, purification, and biological characteristics. Stem Cells Int. https://doi.org/10.1155/2016/1929536

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wood MJ, O’Loughlin AJ, Lakhal S (2011) Exosomes and the blood–brain barrier: implications for neurological diseases. Ther Deliv 2(9):1095–1099

    Article  CAS  Google Scholar 

  11. Matsumoto J, Stewart T, Banks W, Zhang J (2017) The transport mechanism of extracellular vesicles at the blood-brain barrier. Curr Pharm Des 23(40):6206–6014

    Article  CAS  Google Scholar 

  12. Chen CC, Liu L, Ma F, Wong CW, Guo XE, Chacko JV, Farhoodi HP, Zhang SX, Zimak J, Ségaliny A (2016) Elucidation of exosome migration across the blood–brain barrier model in vitro. Cell Mol Bioeng 9(4):509–529

    Article  CAS  Google Scholar 

  13. Yang T, Martin P, Fogarty B, Brown A, Schurman K, Phipps R, Yin VP, Lockman P, Bai S (2015) Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharm Res 32(6):2003–2014

    Article  CAS  Google Scholar 

  14. Endo F, Komine O, Fujimori-Tonou N, Katsuno M, Jin S, Watanabe S, Sobue G, Dezawa M, Wyss-Coray T, Yamanaka K (2015) Astrocyte-derived TGF-β1 accelerates disease progression in ALS mice by interfering with the neuroprotective functions of microglia and T cells. Cell Rep 11(4):592–604

    Article  CAS  Google Scholar 

  15. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317

    Article  CAS  Google Scholar 

  16. Lee J-K, Park S-R, Jung B-K, Jeon Y-K, Lee Y-S, Kim M-K, Kim Y-G, Jang J-Y, Kim C-W (2013) Exosomes derived from mesenchymal stem cells suppress angiogenesis by down-regulating VEGF expression in breast cancer cells. PLoS ONE 8(12):e84256

    Article  Google Scholar 

  17. Mokarizadeh A, Delirezh N, Morshedi A, Mosayebi G, Farshid A-A, Mardani K (2012) Microvesicles derived from mesenchymal stem cells: potent organelles for induction of tolerogenic signaling. Immunol Lett 147(1–2):47–54

    Article  CAS  Google Scholar 

  18. Raha S, Lee HJ, Yumnam S, Hong GE, Saralamma VVG, Ha YL, Kim JO, Kim YS, Heo JD, Lee SJ (2016) Vitamin D2 suppresses amyloid-β 25–35 induced microglial activation in BV2 cells by blocking the NF-κB inflammatory signaling pathway. Life Sci 161:37–44

    Article  CAS  Google Scholar 

  19. Ruan L, Kang Z, Pei G, Le Y (2009) Amyloid deposition and inflammation in APPswe/PS1dE9 mouse model of Alzheimer’s disease. Curr Alzheimer Res 6(6):531–540

    Article  CAS  Google Scholar 

  20. Garcia-Alloza M, Robbins EM, Zhang-Nunes SX, Purcell SM, Betensky RA, Raju S, Prada C, Greenberg SM, Bacskai BJ, Frosch MP (2006) Characterization of amyloid deposition in the APPswe/PS1dE9 mouse model of Alzheimer disease. Neurobiol Dis 24(3):516–524

    Article  CAS  Google Scholar 

  21. Huang P, Lin LM, Wu XY, Tang QL, Feng XY, Lin GY, Lin X, Wang HW, Huang TH, Ma L (2010) Differentiation of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells into germ-like cells in vitro. J Cell Biochem 109(4):747–754

    CAS  PubMed  Google Scholar 

  22. Ordonez-Gutierrez L, Fernandez-Perez I, Herrera JL, Anton M, Benito-Cuesta I, Wandosell F (2016) AβPP/PS1 transgenic mice show sex differences in the cerebellum associated with aging. J Alzheimers Dis 54(2):645–656

    Article  CAS  Google Scholar 

  23. Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1(2):848

    Article  Google Scholar 

  24. Nichols JE, Niles JA, DeWitt D, Prough D, Parsley M, Vega S, Cantu A, Lee E, Cortiella J (2013) Neurogenic and neuro-protective potential of a novel subpopulation of peripheral blood-derived CD133+ ABCG2+ CXCR4+ mesenchymal stem cells: development of autologous cell-based therapeutics for traumatic brain injury. Stem Cell Res Ther 4(1):3

    Article  CAS  Google Scholar 

  25. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method. Methods 25(4):402–408

    Article  CAS  Google Scholar 

  26. Lee JK, Jin HK, Endo S, Schuchman EH, Carter JE, Bae J (2010) Intracerebral transplantation of bone marrow-derived mesenchymal stem cells reduces amyloid-beta deposition and rescues memory deficits in Alzheimer’s disease mice by modulation of immune responses. Stem Cells 28(2):329–343

    CAS  PubMed  Google Scholar 

  27. Reilly JF, Games D, Rydel RE, Freedman S, Schenk D, Young WG, Morrison JH, Bloom FE (2003) Amyloid deposition in the hippocampus and entorhinal cortex: quantitative analysis of a transgenic mouse model. Proc Natl Acad Sci 100(8):4837–4842

    Article  CAS  Google Scholar 

  28. Salloway S, Mintzer J, Weiner MF, Cummings JL (2008) Disease-modifying therapies in Alzheimer’s disease. Alzheimer’s Dement 4(2):65–79

    Article  CAS  Google Scholar 

  29. Reale M, Brenner T, Greig NH, Inestrosa N, Paleacu D (2010) Neuroinflammation, AD, and dementia. Int J Alzheimer’s Dis. https://doi.org/10.4061/2010/97402

    Article  Google Scholar 

  30. Wang S, Wang R, Chen L, Bennett DA, Dickson DW, Wang DS (2010) Expression and functional profiling of neprilysin, insulin-degrading enzyme, and endothelin-converting enzyme in prospectively studied elderly and Alzheimer’s brain. J Neurochem 115(1):47–57

    Article  CAS  Google Scholar 

  31. Edbauer D, Willem M, Lammich S, Steiner H, Haass C (2002) Insulin-degrading enzyme rapidly removes the β-amyloid precursor protein intracellular domain (AICD). J Biol Chem 277(16):13389–13393

    Article  CAS  Google Scholar 

  32. Xin H, Li Y, Buller B, Katakowski M, Zhang Y, Wang X, Shang X, Zhang ZG, Chopp M (2012) Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells 30(7):1556–1564

    Article  CAS  Google Scholar 

  33. Squadrito ML, Baer C, Burdet F, Maderna C, Gilfillan GD, Lyle R, Ibberson M, De Palma M (2014) Endogenous RNAs modulate microRNA sorting to exosomes and transfer to acceptor cells. Cell Rep 8(5):1432–1446

    Article  CAS  Google Scholar 

  34. Baglio SR, Rooijers K, Koppers-Lalic D, Verweij FJ, Lanzón MP, Zini N, Naaijkens B, Perut F, Niessen HW, Baldini N (2015) Human bone marrow-and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species. Stem Cell Res Ther 6(1):127

    Article  Google Scholar 

  35. Chen TS, Lai RC, Lee MM, Choo ABH, Lee CN, Lim SK (2009) Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. Nucleic Acids Res 38(1):215–224

    Article  Google Scholar 

  36. Li X, Liu L, Yang J, Yu Y, Chai J, Wang L, Ma L, Yin H (2016) Exosome derived from human umbilical cord mesenchymal stem cell mediates mir-181c attenuating burn-induced excessive inflammation. EBioMedicine 8:72–82

    Article  Google Scholar 

  37. Mao F, Wu Y, Tang X, Kang J, Zhang B, Yan Y, Qian H, Zhang X, Xu W (2017) Exosomes derived from human umbilical cord mesenchymal stem cells relieve inflammatory bowel disease in mice. BioMed Res Int. https://doi.org/10.1155/2017/5356760

    Article  PubMed  PubMed Central  Google Scholar 

  38. Blazquez R, Sanchez-Margallo FM, de la Rosa O, Dalemans W, Álvarez V, Tarazona R, Casado JG (2014) Immunomodulatory potential of human adipose mesenchymal stem cells derived exosomes on in vitro stimulated T cells. Front Immunol 5:556

    Article  Google Scholar 

  39. Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Investig 122(3):787–795

    Article  CAS  Google Scholar 

  40. Franco R, Fernandez-Suarez D (2015) Alternatively activated microglia and macrophages in the central nervous system. Prog Neurobiol 131:65–86

    Article  CAS  Google Scholar 

  41. Tang Y, Le W (2016) Differential roles of M1 and M2 microglia in neurodegenerative diseases. Mol Neurobiol 53(2):1181–1194

    Article  CAS  Google Scholar 

  42. Colton CA, Wilcock DM (2010) Assessing activation states in microglia. CNS & Neurol Disord-Drug Targ 9(2):174–191

    Article  CAS  Google Scholar 

  43. Mammana S, Fagone P, Cavalli E, Basile MS, Petralia MC, Nicoletti F, Bramanti P, Mazzon E (2018) The role of macrophages in neuroinflammatory and neurodegenerative pathways of Alzheimer’s Disease, amyotrophic lateral sclerosis, and multiple sclerosis: pathogenetic cellular effectors and potential therapeutic targets. Int J Mol Sci 19(3):831

    Article  Google Scholar 

  44. Chen J, Sun Z, Jin M, Tu Y, Wang S, Yang X, Chen Q, Zhang X, Han Y, Pi R (2017) Inhibition of AGEs/RAGE/Rho/ROCK pathway suppresses non-specific neuroinflammation by regulating BV2 microglial M1/M2 polarization through the NF-κB pathway. J Neuroimmunol 305:108–114

    Article  CAS  Google Scholar 

  45. Gong L, Wang H, Sun X, Liu C, Duan C, Cai R, Gu X, Zhu S (2016) Toll-Interleukin 1 Receptor domain-containing adaptor protein positively regulates BV 2 cell M1 polarization. Eur J Neurosci 43(12):1674–1682

    Article  Google Scholar 

  46. Luccarini I, Grossi C, Traini C, Fiorentini A, Dami TE, Casamenti F (2012) Aβ plaque-associated glial reaction as a determinant of apoptotic neuronal death and cortical gliogenesis: a study in APP mutant mice. Neurosci Lett 506(1):94–99

    Article  CAS  Google Scholar 

  47. Lull ME, Levesque S, Surace MJ, Block ML (2011) Chronic apocynin treatment attenuates beta amyloid plaque size and microglial number in hAPP (751) SL mice. PLoS ONE 6(5):e20153

    Article  CAS  Google Scholar 

  48. Hickman SE, Allison EK, El Khoury J (2008) Microglial dysfunction and defective β-amyloid clearance pathways in aging Alzheimer’s disease mice. J Neurosci 28(33):8354–8360

    Article  CAS  Google Scholar 

  49. Colton CA (2009) Heterogeneity of microglial activation in the innate immune response in the brain. J Neuroimmune Pharmacol 4(4):399–418

    Article  Google Scholar 

  50. Sawada M, Suzumura A, Hosoya H, Marunouchi T, Nagatsu T (1999) Interleukin-10 inhibits both production of cytokines and expression of cytokine receptors in microglia. J Neurochem 72(4):1466–1471

    Article  CAS  Google Scholar 

  51. Butovsky O, Talpalar AE, Ben-Yaakov K, Schwartz M (2005) Activation of microglia by aggregated β-amyloid or lipopolysaccharide impairs MHC-II expression and renders them cytotoxic whereas IFN-γ and IL-4 render them protective. Mol Cell Neurosci 29(3):381–393

    Article  CAS  Google Scholar 

  52. François A, Julian A, Ragot S, Dugast E, Blanchard L, Brishoual S, Chassaing D, Page G, Paccalin M (2015) Inflammatory stress on autophagy in peripheral blood mononuclear cells from patients with Alzheimer’s disease during 24 months of follow-up. PLoS ONE 10(9):e0138326

    Article  Google Scholar 

  53. Macchi B, Marino-Merlo F, Frezza C, Cuzzocrea S, Mastino A (2014) Inflammation and programmed cell death in Alzheimer’s disease: comparison of the central nervous system and peripheral blood. Mol Neurobiol 50(2):463–472

    Article  CAS  Google Scholar 

  54. Ransohoff RM (2016) A polarizing question: do M1 and M2 microglia exist? Nat Neurosci 19(8):987

    Article  CAS  Google Scholar 

  55. Orihuela R, McPherson CA, Harry GJ (2016) Microglial M1/M2 polarization and metabolic states. Br J Pharmacol 173(4):649–665

    Article  CAS  Google Scholar 

  56. Tang J, Yu W, Chen S, Gao Z, Xiao B (2018) Microglia polarization and endoplasmic reticulum stress in chronic social defeat stress induced depression mouse. Neurochem Res. https://doi.org/10.1007/s11064-018-2504-0

    Article  PubMed  PubMed Central  Google Scholar 

  57. Wang D-S, Dickson DW, Malter JS (2006) β-Amyloid degradation and Alzheimer’s disease. BioMed Res Int. https://doi.org/10.1155/JBB/2006/58406

    Article  Google Scholar 

  58. Hellström-Lindahl E, Ravid R, Nordberg A (2008) Age-dependent decline of neprilysin in Alzheimer’s disease and normal brain: inverse correlation with Aβ levels. Neurobiol Aging 29(2):210–221

    Article  Google Scholar 

  59. Malito E, Hulse RE, Tang W-J (2008) Amyloid β-degrading cryptidases: insulin degrading enzyme, presequence peptidase, and neprilysin. Cell Mol Life Sci 65(16):2574–2585

    Article  CAS  Google Scholar 

  60. Leissring MA, Farris W, Chang AY, Walsh DM, Wu X, Sun X, Frosch MP, Selkoe DJ (2003) Enhanced proteolysis of β-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death. Neuron 40(6):1087–1093

    Article  CAS  Google Scholar 

  61. Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297(5580):353–356

    Article  CAS  Google Scholar 

  62. Rowan M, Klyubin I, Wang Q, Hu N, Anwyl R (2007) Synaptic memory mechanisms: Alzheimer’s disease amyloid β-peptide-induced dysfunction. Biochem Soc Trans 35:1219–1223

    Article  CAS  Google Scholar 

  63. Das A, Ganesh K, Khanna S, Sen CK, Roy S (2014) Engulfment of apoptotic cells by macrophages: a role of microRNA-21 in the resolution of wound inflammation. J Immunol 192(3):1120–1129

    Article  CAS  Google Scholar 

  64. Cui G-H, Wu J, Mou F-F, Xie W-H, Wang F-B, Wang Q-L, Fang J, Xu Y-W, Dong Y-R, Liu J-R (2017) Exosomes derived from hypoxia-preconditioned mesenchymal stromal cells ameliorate cognitive decline by rescuing synaptic dysfunction and regulating inflammatory responses in APP/PS1 mice. FASEB J 32(2):654–668

    Article  Google Scholar 

Download references

Funding

This study was supported by National Natural Science Foundation of China (Grant Nos. 81401052, 81571052), The Special fund for basic research and business funds of Chinese Centre Universities (Grant No. 2018BTS01), Science and Technology Development Plan Project of Shandong Province (Grant Nos. 2017GSF218036, 2017GSF218046), The Fundamental Research Funds of Shandong University (Grant No. 2016JC022), Youth Talent Fund of the 2nd Hospital of Shandong University (Grant No. 2018YT09) and Focus on research and development projects in Shandong province (Grant No. 2015GSF118056).

Author information

Authors and Affiliations

Authors

Contributions

MD designed and performed the experiments and wrote the manuscript. YS, ZHX participated in designing the experiments. PW, SLX, and ZYZ provided assistance for data analysis, mouse-injection experiments, and ELISA assay, respectively. YW, YTL, LLX and DWW were responsible for mouse-behavior observation. HY and JZB participated in designing the experiments and drafting the manuscript. All authors read and approved the manuscript for publication.

Corresponding authors

Correspondence to JianZhong Bi or Hui Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Ethics Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of Shandong University and the ethical committee of the Second Hospital of Shandong University and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. All applicable Shandong University and the ethical committee of the Second Hospital of Shandong University guidelines for the care and use of animals were followed.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, M., Shen, Y., Wang, P. et al. Exosomes Isolated From Human Umbilical Cord Mesenchymal Stem Cells Alleviate Neuroinflammation and Reduce Amyloid-Beta Deposition by Modulating Microglial Activation in Alzheimer’s Disease. Neurochem Res 43, 2165–2177 (2018). https://doi.org/10.1007/s11064-018-2641-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-018-2641-5

Keywords

Navigation