Skip to main content
Log in

Deciphering the Role of EGL-3 for Neuropeptides Processing in Caenorhabditis elegans Using High-Resolution Quadrupole–Orbitrap Mass Spectrometry

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Neuropeptides are derived from large and inactive proteins which require endoproteolytic processing for the biosynthesis of the bioactive peptides. The maturation of pro-neuropeptide to neuropeptide is believed to be performed by ortholog pro-protein convertase EGL-3 in Caenorhabditis elegans (C. elegans). Furthermore, ortholog of Cathepsin L, CPL-1 are found in C. elegans and can potentially cleave paired basic amino acids at the N-terminal suggesting the presence of both pathways. The objective of this study was to decipher the role of EGL-3 in the proteolysis of FMRF amide-related peptides (FLPs) or neuropeptide-like proteins (NLPs) using synthetic surrogate peptides based on a universal enzymatic cleavage pattern published by Schechter and Berger and used widely in enzymology. The results show evidence that proteolysis controls FLP-21 and NLP-8 related neuropeptide levels in C. elegans. Surrogate peptides were degraded rapidly when exposed to C. elegans S9 fractions leading to the formation of specific peptide fragments related to EGL-3 and CPL-1 pathway. The results suggest that CPL-1 pathway does not compensate for the loss of the EGL-3 pathway. Proteolysis of pro-neuropeptides associated to FLP-21 and NLP-8 in elg-3 mutants are severely hampered leading to a lack of mature bioactive neuropeptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Reproduced with permission from Hook et al. [6]). b FLP-21 processing by proprotein convertases EGL-3 leading to active FLP-21 neuropeptide. c NLP-8 processing by proprotein convertases EGL-3 and carboxypeptidase E EGL-21 leading to several actives neuropeptides. Identification of surrogate peptides used for further in vitro exploration was based on subsite nomenclature adopted from a scheme developed by Schechter and Berger [26, 27] and used to describe of enzyme specificities

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hook V, Brennand KJ, Kim Y, Toneff T, Funkelstein L, Lee KC et al (2014) Human iPSC neurons display activity-dependent neurotransmitter secretion: aberrant catecholamine levels in schizophrenia neurons. Stem Cell Rep 3(4):531–538

    Article  CAS  Google Scholar 

  2. Rouillé Y, Duguay SJ, Lund K, Furuta M, Gong Q, Lipkind G et al (1995) Proteolytic processing mechanisms in the biosynthesis of neuroendocrine peptides: the subtilisin-like proprotein convertases. Front Neuroendocrinol 16(4):322–361

    Article  Google Scholar 

  3. Seidah NG, Day R, Marcinkiewicz M, Chretien M (1998) Precursor convertases: an evolutionary ancient, cell-specific, combinatorial mechanism yielding diverse bioactive peptides and proteins. Ann N Y Acad Sci 839(1):9–24

    Article  CAS  Google Scholar 

  4. Alberts B, Johnson A, Lewis J et al (2002) Molecular biology of the cell, 4th edn. Garland Science, New York

    Google Scholar 

  5. Steiner DF, Smeekens SP, Ohagi S, Chan SJ (1992) The new enzymology of precursor processing endoproteases. J Biol Chem 267:23435–23438

    CAS  PubMed  Google Scholar 

  6. Hook V, Funkelstein L, Lu D, Bark S, Wegrzyn J, Hwang SR (2008) Proteases for processing proneuropeptides into peptide neurotransmitters and hormones. Annu Rev Pharmacol Toxicol 48:393

    Article  CAS  Google Scholar 

  7. Hook VY (2006) Protease pathways in peptide neurotransmission and neurodegenerative diseases. Cell Mol Neurobiol 26(4–6):447–467

    Article  Google Scholar 

  8. Seidah N, Prat A (2002) Precursor convertases in the secretory pathway, cytosol and extracellular milieu. Essays Biochem 38:79–94

    Article  CAS  Google Scholar 

  9. Scamuffa N, Calvo F, Chrétien M, Seidah NG, Khatib AM (2006) Proprotein convertases: lessons from knockouts. FASEB J 20(12):1954–1963

    Article  CAS  Google Scholar 

  10. Hwang SR, O’Neill A, Bark S, Foulon T, Hook V (2007) Secretory vesicle aminopeptidase B related to neuropeptide processing: molecular identification and subcellular localization to enkephalin-and NPY-containing chromaffin granules. J Neurochem 100(5):1340–1350

    Article  CAS  Google Scholar 

  11. Zhang X, Pan H, Peng B, Steiner DF, Pintar JE, Fricker LD (2010) Neuropeptidomic analysis establishes a major role for prohormone convertase-2 in neuropeptide biosynthesis. J Neurochem 112(5):1168–1179

    Article  CAS  Google Scholar 

  12. Minokadeh A, Funkelstein L, Toneff T, Hwang SR, Beinfeld M, Reinheckel T, Hook V (2010) Cathepsin L participates in dynorphin production in brain cortex, illustrated by protease gene knockout and expression. Mol Cell Neurosci 43(1):98–107

    Article  CAS  Google Scholar 

  13. Saidi M, Kamali S, Ruiz AO, Beaudry F (2015) Tachykinins processing is significantly impaired in PC1 and PC2 mutant mouse spinal cord S9 fractions. Neurochem Res 40(11):2304–2316

    Article  CAS  Google Scholar 

  14. Salem JB, Nkambeu B, Beaudry F (2018) Characterization of neuropeptide K processing in rat spinal cord S9 fractions using high-resolution quadrupole–orbitrap mass spectrometry. Biomed Chromatogr 32(6):e4204

    Article  Google Scholar 

  15. Orduna AR, Beaudry, F (2016) Characterization of endoproteolytic processing of dynorphins by proprotein convertases using mouse spinal cord S9 fractions and mass spectrometry. Neuropeptides 57:85–94

    Article  CAS  Google Scholar 

  16. Mills H, Wragg R, Haplak V, Castelleto M, Zahratka J, Harris G, Summers P, Korchnak A, Law W, Bamber B, Komuniecki R (2012) Monoamines and neuropeptides interact to inhibit aversive behaviour in Caenorhabditis elegans. EMBO J 31(3):667–678

    Article  CAS  Google Scholar 

  17. Li C (2005) The ever-expanding neuropeptide gene families in the nematode Caenorhabditis elegans. Parasitology 131(Suppl):S109–S127

    CAS  PubMed  Google Scholar 

  18. Hu Z, Pym ECG, Babu K, Vashlishan-Murray AB, Kaplan JM (2011) A neuropeptide-mediated stretch response links muscle contraction to changes in neurotransmitter release. Neuron 71:92–102

    Article  CAS  Google Scholar 

  19. Glauser DA, Chen WC, Agin R, MacInnis B, Hellman AB, Garrity PA, Man-WahTan, Goodman MB (2011) Heat avoidance is regulated by Transient Receptor Potential (TRP) channels and a neuropeptide signaling pathway in Caenorhabditis elegans. Genet Soc Am 188:91–103

    CAS  Google Scholar 

  20. Komuniecki R, Harris G, Haplak V (2012) Monoamines activate neuropeptide signaling cascades to modulate nociception in C. elegans: a useful model for the modulation of chronic pain? Invertebr Neurosci 12:53–61

    Article  CAS  Google Scholar 

  21. Kass J, Jacob TC, Kim P, Kaplan JM (2001) The EGL-3 pro-protein convertase regulates mechanosensory responses of Caenorhabditis elegans. J Neurosci 21(23):9265–9672

    Article  CAS  Google Scholar 

  22. Choi S, Chatzigeorgiou M, Taylor KP, Schafer WR, Kaplan JM (2013) Analysis of NPR-1 reveals a circuit mechanism for behavioral quiescence in C. elegans. Neuron 78(5):869–880

    Article  CAS  Google Scholar 

  23. Husson SJ, Clynen E, Baggerman G, Janssen T, Schoofs L (2006) Defective processing of neuropeptide precursors in Caenorhabditis elegans lacking proprotein convertase 2 (KPC-2/EGL-3): mutant analysis by mass spectrometry. J Neurochem 98(6):1999–2012

    Article  CAS  Google Scholar 

  24. Husson SJ, Janssen T, Baggerman G, Bogert B, Kahn-Kirby AH, Ashrafi K, Schoofs L (2007) Impaired processing of FLP and NLP peptides in carboxypeptidase E (EGL-21)-deficient Caenorhabditis elegans as analyzed by mass spectrometry. J Neurochem 102(1):246–260

    Article  CAS  Google Scholar 

  25. Wittenburg N, Baumeister R (1999) Thermal avoidance in Caenorhabditis elegans: an approach to the study of nociception. PNAS 96(18):10477–10482

    Article  CAS  Google Scholar 

  26. Schechter I, Berger A (1967) On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun 27(2):157–162

    Article  CAS  Google Scholar 

  27. Schechter I, Berger A (1968) On the active site of proteases. 3. Mapping the active site of papain; specific peptide inhibitors of papain. Biochem Biophys Res Commun 32(5):898–902

    Article  CAS  Google Scholar 

  28. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Margie O, Palmer C, Chin-Sang I (2013) C. elegans chemotaxis assay. J Vis Exp 74:1–6

    Google Scholar 

  30. Roepstorff P, Fohlman J (1984) Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed Mass Spectrom 11(11):601

    Article  CAS  Google Scholar 

  31. Bousquet-Moore D, Mains RE, Eipper BA (2010) PAM and copper—a gene/nutrient interaction critical to nervous system function. J Neurosci Res 88(12):2535–2545

    Article  CAS  Google Scholar 

  32. Metaxakis A, Petratou D, Tavernarakis N (2018) Multimodal sensory processing in Caenorhabditis elegans. Open Biol. 8(6):180049

    Article  Google Scholar 

  33. Ma L, Zhao Y, Chen Y, Cheng B, Peng A, Huang K (2018) Caenorhabditis elegans as a model system for target identification and drug screening against neurodegenerative diseases. Eur J Pharmacol 819:169–180

    Article  CAS  Google Scholar 

  34. Blein-Nicolas M, Zivy M (2016) Thousand and one ways to quantify and compare protein abundances in label-free bottom-up proteomics. Biochim Biophys Acta 1864(8):883–895

    Article  CAS  Google Scholar 

  35. Neilson KA, Ali NA, Muralidharan S, Mirzaei M, Mariani M, Assadourian G, Lee A, Van Sluyter SC, Haynes PA (2011) Less label, more free: approaches in label-free quantitative mass spectrometry. Proteomics 11:535–553

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was funded by the National Sciences and Engineering Research Council of Canada (F. Beaudry discovery Grant No. RGPIN-2015-05071). The mass spectrometry analyses were performed using an infrastructure funded by the Canadian Foundation for Innovation (CFI) and the Fonds de Recherche du Québec (FRQ), Government of Quebec (F. Beaudry CFI John R. Evans Leaders Grant No. 36706). A PhD scholarship was awarded to J. Ben Salam with a grant obtained from Fondation de France (DN Arvanitis Grant No. RAF18002BBA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis Beaudry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salem, J.B., Nkambeu, B., Arvanitis, D.N. et al. Deciphering the Role of EGL-3 for Neuropeptides Processing in Caenorhabditis elegans Using High-Resolution Quadrupole–Orbitrap Mass Spectrometry. Neurochem Res 43, 2121–2131 (2018). https://doi.org/10.1007/s11064-018-2636-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-018-2636-2

Keywords

Navigation