Advertisement

Neurochemical Research

, Volume 43, Issue 9, pp 1791–1801 | Cite as

All Trans Retinoic Acid Attenuates Markers of Neuroinflammation in Rat Brain by Modulation of SIRT1 and NFκB

  • S. H. Priyanka
  • S. Syam Das
  • A. J. Thushara
  • Arun A. Rauf
  • M. Indira
Original Paper

Abstract

Alcohol abuse affects several neurological pathways and causes significant alterations in the brain. Abstention from alcohol causes only a marginal decrease in oxidative stress and neuro inflammation. Our previous studies had shown that an active metabolite of vitamin A, all trans retinoic acid (ATRA), ameliorates alcohol induced toxicity. Hence in the present study we investigated whether ATRA regressed alcohol induced neuroinflammation. We focused on the role of silent mating type information regulation 2 homolog 1(SIRT1) and nuclear factor kappa-B (NFκB). Animals were administered with ethanol at a daily dose of (4 g/kg body weight) for 90 days. On the 91st day ethanol administration was stopped and animals were divided into ethanol abstention (A) and ATRA supplementation group (ATRA + A) (100 µg/kg body weight) and maintained for 30 days. Ethanol exposure increased markers of oxidative stress, inflammation and the activities of alcohol and acetaldehyde dehydrogenases and reduced the expression of SIRT1 in the whole brain.The ethanol induced altered expressions of NFκB and SIRT1 were modulated by supplementation of ATRA. Abstention also reduced toxicity, but to a lower extent in comparison with supplementation of ATRA. Our results seemed to suggest that ATRA regressed the mediators of ethanol induced neuroinflammation by reducing oxidative stress and by regulating the expression of NFκB and SIRT1. The ameliorative potential of ATRA was much higher than abstention.

Keywords

Alcohol Neuroinflammation ATRA SIRT1 NFκB 

Notes

Acknowledgements

This work was supported by Kerala State Council for Science, Technology & Environment (vide order No. 974/2015/KSCSTE) and District Development Office for SC, Trivandrum (vide order No. B3-29455/16).

References

  1. 1.
    Alfonso-Loeches S, Guerri C (2011) Molec ular and behavioral aspects of the actions of alcohol on the adult and developing brain. Crit Rev Clin Lab Sci 48(1):19–47CrossRefPubMedGoogle Scholar
  2. 2.
    Pascual M, Blanco AM, Cauli O, Minarro J, Guerri C (2007) Intermittent ethanol exposure induces inflammatory brain damage and causes long-term behavioural alterations in adolescent rats. Eur J Neurosci 25:541–550CrossRefPubMedGoogle Scholar
  3. 3.
    Oliveira GB, Fontes ED Jr, de Carvalho S, da Silva JB, Fernandes LM et al (2014) Mynocycline mitigates motor impairments and cortical neuronal loss induced by focal ischemia in rats chronically exposed to ethanol during adolescence. Brain Res 1561:23–34CrossRefPubMedGoogle Scholar
  4. 4.
    Shih R-H, Wang C-Y, Yang C-M (2015) NF-kappaB signaling pathways in neurological inflammation: a mini review. Front Mol Neurosci 8:77CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Boissière F, Hunot S, Faucheux B, Duyckaerts C, Hauw J-J, Agid Y, Hirsch EC (1997) Nuclear translocation of NF-κB in cholinergic neurons of patients with Alzheimer’s disease. NeuroReport 8(13):2849–2852CrossRefPubMedGoogle Scholar
  6. 6.
    Ding R-B, Bao J, Deng CX (2017) Review emerging roles of SIRT1 in fatty liver diseases. Int J Biol Sci 13(7):852–867CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Marshall SA, McClain JA, Kelso ML, Hopkins DM, Pauly JR, Nixon K (2013) Microglial activation is not equivalent to neuroinflammation in alcohol-induced neurodegeneration: the importance of microglia phenotype. Neurobiol Dis 54:239–251CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Syapin PJ, Hickey WF, Kane CJM (2015) Alcohol brain damage and neuroinflammation: is there a connection? Alcohol. Clin Exp Res 29:6Google Scholar
  9. 9.
    Ransohoff RM, Brown MA (2012) Innate immunity in the central nervous system. J Clin Invest 122:1164–1171CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Yin H, Hu M, Liang X, Ajmo JM, Li X, Bataller R, Odena G, Stevens SM, You M (2013) Deletion of SIRT1 from hepatocytes in mice disrupts lipin-1 signaling and aggravates alcoholic fatty liver. Gastroenterology 146(3):801–811CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Yin H, Hu M, Zhang R, Shen Z, Flatow L, You M (2012) MicroRNA-217 promotes ethanol-induced fat accumulation in hepatocytes by down-regulating SIRT1. J Biol Chem 287:9817–9826CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Tao Y, Huang C, Huang Y et al (2015) SIRT4 suppresses inflammatory responses in human umbilical vein endothelial cells. Cardiovasc Toxicol 15:217–223CrossRefPubMedGoogle Scholar
  13. 13.
    Du J, Zhou Y, Su X et al (2011) Sirt 5 is a NAD-dependent protein lysinedemalonylase and desuccinylase. Science 334:806–809CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Liu TF, Brown CM, Gazzar ME et al (2012) Fueling the flame: bioenergy couples metabolism and inflammation. J Leukoc Biol 92:499–507CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Ma X, Zhao J, Lieber CS (1996) Polyenyl phosphatidylcholine attenuates nonalcoholic hepatic fibrosis and accelerates its regression. Int J Hepatol 24:604–613CrossRefGoogle Scholar
  16. 16.
    Van Eijk J, Demirakca T, Frischknecht U, Hermann D, Mann K, Ende G (2013) Rapid partial regeneration of brain volume during the first 14 days of abstinence from alcohol. Alcohol Clin Exp Res 37(1):67–74CrossRefPubMedGoogle Scholar
  17. 17.
    Rossi RE, Contea D, Massironi S (2015) Diagnosis and treatment of nutritional deficiencies in alcoholic liver disease: overview of available evidence and open issues. Dig Liver Dis 47(10):819–825CrossRefPubMedGoogle Scholar
  18. 18.
    Clugston RD, Blaner WS (2012) The adverse effects of alcohol on vitamin A metabolism. Nutrients 4(5):356–371CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Duester G (2008) Retinoic acid synthesis and signaling during early organogenesis. Cell 134:921–931CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Lee H-P, Casadesus G, Zhu X, Lee H-G, Perry G, Smith MA, Gustaw-Rothenberg K, Lerner A (2009) All-trans retinoic acid as a novel therapeutic strategy for Alzheimer’s disease. Neurotherapeutics 9(11):1615–1621CrossRefGoogle Scholar
  21. 21.
    Nair SS, Prathibha P, Syam Das S, Kavitha S, Indira M (2015) All trans retinoic acid (ATRA) mediated modulation of N-methyl D-aspartate receptor (NMDAR) and Kruppel like factor 11 (KLF11) expressions in the mitigation of ethanol induced alterations in the brain. Neurochem Int 83:41–47CrossRefPubMedGoogle Scholar
  22. 22.
    Priyanka SH, Das S, Nair SS, Rauf AA, Indira M (2018) All trans retinoic acid modulates TNF-α and CYP2E1 pathways and enhances regression of ethanol-induced fibrosis markers in hepatocytes and HSCs in abstaining rodent model. Arch Physiol Biochem.  https://doi.org/10.1080/13813455.2018.1455712 PubMedCrossRefGoogle Scholar
  23. 23.
    Hume CW (1957) The legal protection of laboratory animals. In: Worden AN, Lane-Petter W (eds) The UFAW handbook on the care and management of laboratory animals. Universities Federation for Animal Welfare, London, pp 1–14Google Scholar
  24. 24.
    Kakkar P, Das B, Viswanathan PN (1984) A modified spectrophotometric assay of superoxide dismutase. Indian J Biochem Biophys 21(2):130–132PubMedGoogle Scholar
  25. 25.
    Maehly AC, Chance B (1954) The assay of catalase and peroxides. Methods Biochem Anal 1:357–424PubMedGoogle Scholar
  26. 26.
    Agergurd N, Jense PJ (1982) Procedure for blood glutathione peroxidise determination in cattle and swine. Anta Vet Scand 23:515–529Google Scholar
  27. 27.
    David M, Richard JS (1983) Glutathione reductase. In: Bergmeyer HU, Bergmeyer J (eds) Methods of enzymatic analysis. Academic Press, New York, pp 258–265Google Scholar
  28. 28.
    Patterson JW, Lazarow A (1955) Determination of glutathione. In: Glick D (ed) Methods of biochemical analysis. Interscience, New York, pp 259–278Google Scholar
  29. 29.
    Mair RD, Hall T (1971) Inorganic peroxides II (Swern D, Willey C eds), vol 2. Wiley, New York, pp 535–538Google Scholar
  30. 30.
    Ohkawa H, Ohishi N, Yagi K (1979) Assay of lipid peroxides in animal tissue by thiobarbituric acid reaction. Anal Biochem 95(2):351–358CrossRefPubMedGoogle Scholar
  31. 31.
    Abraham ZR, Pecker L (1993) Oxidative damage to proteins: spectrophotometric method for carbonyl assays. Methods Enzymol 233:357–363Google Scholar
  32. 32.
    Kim C, Kim JY, Kim JH (2008) Cytosolic phospholipase A(2), lipoxygenase metabolites, and reactive oxygen species. BMB Reports 41:555–555CrossRefPubMedGoogle Scholar
  33. 33.
    Huh HY, Los SK, Yesner LM, Silverstein RL (1995) CD36 induction on human monocytes upon adhesion to tumour necrosis factor-activated endothelial cells. J Biol Chem 270(11):6267–6271CrossRefPubMedGoogle Scholar
  34. 34.
    Shimazu T, Kondo K, Hayaishi O (1981) Role of prostaglandin endoperoxides serum thiobarbituric acid reaction. Arch Biochem Biophys 206:271–276CrossRefGoogle Scholar
  35. 35.
    Axelrod B, Cheesbrough TM, Laakso S. Lipoxygenases from soybeans. Methods Enzymol 71:441–451Google Scholar
  36. 36.
    Koivisto T, Salaspuro M (1998) Acetaldehyde alters proliferation, differentiation and adhesion properties of human colon adenocarcinoma cell line Caco2. Carcinogenesis 19:2031–2036CrossRefPubMedGoogle Scholar
  37. 37.
    Canuto RA, Garcea R, Biocca ME, Pascale R, Pirisi L, Feo F (1983) The subcellular distribution and properties of aldehydes dehydrogenase of hepatoma AH-130. Eur J Cancer Clin Oncol 19:389–400CrossRefPubMedGoogle Scholar
  38. 38.
    Chomczynski P, Sacchi N (2006) The single-step method of RNA isolation by acid guanidinium thiocynate-phenol-chloroform extraction: twenty-something years on. Nat Protoc 1(2):581–585CrossRefPubMedGoogle Scholar
  39. 39.
    Cox B, Emili A (1971) Tissue subcellular fractionation and protein extraction for use in mass spectrometry based proteomic. Nat Protoc 1(4):1872–1878CrossRefGoogle Scholar
  40. 40.
    Engvall E, Perlmann P (1971) Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G. Immunochemistry 8:871–874CrossRefPubMedGoogle Scholar
  41. 41.
    Lowry OH, Rosebrough NJ, Farr AL (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  42. 42.
    Halliwell B, Gutteridge JM (1999) Free radicals in biology and medicine. Oxford University Press Inc, New York, pp 105–245Google Scholar
  43. 43.
    Blednov YA, Benavidez JM, Geil C et al (2011) Activation of inflammatory signaling by lipopolysaccharide produces a prolonged increase of voluntary alcohol intake in mice. Brain BehavImmun 25(1):92–105Google Scholar
  44. 44.
    Blednov YA, Ponomarev I, Geil C et al (2012) Neuroimmune regulation of alcohol consumption: behavioral validation of genes obtained from genomic studies. Addict Biol 17:108–120CrossRefPubMedGoogle Scholar
  45. 45.
    Jurczuk M, Moniuszko-Jakoniuk J, Rogalsk J (2006) Glutathione related enzyme activity in liver and kidney of rats exposed to cadmium and ethanol. Polish J Environ Stud 15:861–886Google Scholar
  46. 46.
    Rejitha S, Prathibha P, Indira M (2014) Nrf2-mediated antioxidant response by ethanolic extract of Sidacordifolia provides protection against alcohol-induced oxidative stress in liver by upregulation of glutathione metabolism. Redox Rep 20(2):75–80CrossRefPubMedGoogle Scholar
  47. 47.
    Vidhya A, Renju GV, Indira M (2010) Comparative study of the efficacy of ascorbic acid, quercetin, and thiamine for reversing ethanol induced toxicity. J Med Food 13(6):1485–1489CrossRefGoogle Scholar
  48. 48.
    Hong JT (2017) NF-kB as a mediator of brain inflammation in AD. CNS Neurol Disord Drug Targets.  https://doi.org/10.2174/1871527316666170807130011 CrossRefPubMedGoogle Scholar
  49. 49.
    Qin L, He J, Hanes R et al (2008) Increased systemic and brain cytokine production and neuroinflammation by endotoxin following ethanol treatment. J Neuroinflammation 5:10CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Szabo G, Mandrekar P, Dolganiuc A, Catalano D, Kodys K (2001) Reduced alloreactive t-cell activation after alcohol intake is due to impaired monocyte accessory cell function and correlates with elevated IL-10, IL-13, and decreased IFN_ levels. Alcohol Clin Exp Res 12:1766–1772Google Scholar
  51. 51.
    von Heymann C, Langenkamp J, Dubisz N, von Dossow V, Schaffartzik W, Kern H, Kox WJ, Spies C (2002) Posttraumatic immune modulation in chronic alcoholics is associated with multiple organ dysfunction syndrome. J Trauma Acute Care Surg 52:95–103CrossRefGoogle Scholar
  52. 52.
    Haigis MC, Sinclair DA (2010) Mammalian sirtuins: biological insights and disease relevance. Ann Rev Pathol 5:253–295CrossRefGoogle Scholar
  53. 53.
    Shen Z, Liang X, Rogers CQ, Rideout D, You M (2010) Involvement of adiponectin-SIRT1-AMPK signaling in the protective action of rosiglitazone against alcoholic fatty liver in mice. Am J Physiol Gastrointest Liver Physiol 298:364–374CrossRefGoogle Scholar
  54. 54.
    Lei M, Wang JG, Xiao DM et al (2012) Resveratrol inhibits interleukin 1β-mediated inducible nitric oxide synthase expression in articular chondrocytes by activating SIRT1 and thereby suppressing nuclear factor-κB activity. Eur J Pharmacol 674:73–79CrossRefPubMedGoogle Scholar
  55. 55.
    Venkataraman A, Kalk N, Sewell G, Ritchie CW, Lingford-Hughes A (2017) Alcohol and Alzheimer’s disease does alcohol dependence contribute to beta-amyloid deposition, neuroinflammation and neurodegeneration in Alzheimer’s disease? Alcohol Alcohol 52(2):151–158PubMedGoogle Scholar
  56. 56.
    Heppner F, Ransohoff R, Becher B (2015) Immune attack: the role of inflammation in Alzheimer disease. Nat Rev Neurosci 16:358–372.  https://doi.org/10.1038/nrn3880 CrossRefPubMedGoogle Scholar
  57. 57.
    Deik A, Saunders-Pullman R, San Luciano M (2012) Substances of abuse and movement disorders: complex interactions and comorbidities. Curr Drug Abuse Rev 5(3):243–253CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Beheri N, Belkhelfa M, Rafa H, Labsi M, Deghbar N, Bouzid N, Mesbah-Amroun H, Touil-Boukoffa CJ (2016) All-trans retinoic acid (ATRA) prevents lipopolysaccharide-induced neuroinflammation, amyloidogenesis and memory impairment in aged rats. J Neuroimmunol 15:300: 21–29CrossRefGoogle Scholar
  59. 59.
    Takamura R, Watamura N, Nikkuni M, Ohshima TJ (2017) All-trans retinoic acid improved impaired proliferation of neural stem cells and suppressed microglial activation in the hippocampus in an Alzheimer’s mouse model. J Neurosci Res 95(3):897–906CrossRefPubMedGoogle Scholar
  60. 60.
    Behairi N, Belkhelfa M, Mesbah-Amroun H, Rafa H, Belarbi S, Tazir M, Touil-Boukoffa C (2015) All-trans-retinoic acid modulates nitric oxide and interleukin-17A production by peripheral blood mononuclear cells from patients with Alzheimer’s disease. Neuroimmunomodulation 22:385–393CrossRefPubMedGoogle Scholar
  61. 61.
    Ding Y, Qiao A, Wang Z, Goodwin JS, Lee ES, Block ML, Allsbrook M, McDonald MP, Fan GH (2008) Retinoic acid attenuates beta-amyloid deposition and rescues memory deficits in an Alzheimer’s disease transgenic mouse model. J Neurosci 28(45):11622–11634CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BiochemistryUniversity of KeralaThiruvananthapuramIndia

Personalised recommendations