Advertisement

Neurochemical Research

, Volume 43, Issue 9, pp 1714–1722 | Cite as

NCAM Mimetic Peptides: Potential Therapeutic Target for Neurological Disorders

  • Chengyan Chu
  • Yue Gao
  • Xiaoyan Lan
  • Aline Thomas
  • Shen Li
Review Paper

Abstract

The neural cell adhesion molecule (NCAM) plays a pivotal role in the development and maintenance of the nervous system via homophilic (NCAM–NCAM) and heterophilic (NCAM-other molecules) interactions. Many synthetic peptides have been engineered to mimic these interactions and induce NCAM-downstream signaling pathways. Such NCAM mimetics have displayed neuritogenic and neuroprotective properties, as well as synaptic modulation in vitro and in vivo. Furthermore, they have been used successfully in preclinical studies to treat neurological disorders including stroke, traumatic brain injury and Alzheimer’s disease. This review focuses on recent progress in the development of NCAM mimetic peptides, in particular, on establishing C3, plannexin, and FGL as therapeutic candidates for neurological disorders.

Keywords

Neural cell adhesion molecule Bioactive peptides Mimetic peptides Fibroblast growth factor receptor Neurological disorders 

Notes

Acknowledgements

The work was fund by the National Natural Science Foundation of China (81300985), Natural Science Foundation of Liaoning Province (2015020549) and Dalian Municipal Health and Family Planning Project (1711014).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Li S, Bock E, Berezin V (2010) Neuritogenic and neuroprotective properties of peptide agonists of the fibroblast growth factor receptor. Int J Mol Sci 11:2291–2305CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Nybroe O, Bock E (1990) Structure and function of the neural cell adhesion molecules NCAM and L1. Adv Exp Med Biol 265:185–196CrossRefPubMedGoogle Scholar
  3. 3.
    Edelman GM, Cunningham BA (1990) Place-dependent cell adhesion, process retraction, and spatial signaling in neural morphogenesis. Cold Spring Harb Symp Quant Biol 55:303–318CrossRefPubMedGoogle Scholar
  4. 4.
    Edelman GM (1986) Cell adhesion molecules in the regulation of animal form and tissue pattern. Annu Rev Cell Biol 2:81–116CrossRefPubMedGoogle Scholar
  5. 5.
    Ronn LC, Hartz BP, Bock E (1998) The neural cell adhesion molecule (NCAM) in development and plasticity of the nervous system. Exp Gerontol 33:853–864CrossRefPubMedGoogle Scholar
  6. 6.
    Maness PF, Schachner M (2007) Neural recognition molecules of the immunoglobulin superfamily: signaling transducers of axon guidance and neuronal migration. Nat Neurosci 10:19–26CrossRefPubMedGoogle Scholar
  7. 7.
    Persohn E, Pollerberg GE, Schachner M (1989) Immunoelectron-microscopic localization of the 180 kD component of the neural cell adhesion molecule N-CAM in postsynaptic membranes. J Comp Neurol 288:92–100CrossRefPubMedGoogle Scholar
  8. 8.
    Edelman GM, Hoffman S, Chuong CM, Thiery JP, Brackenbury R, Gallin WJ, Grumet M, Greenberg ME, Hemperly JJ, Cohen C et al (1983) Structure and modulation of neural cell adhesion molecules in early and late embryogenesis. Cold Spring Harb Symp Quant Biol 48:515–526CrossRefPubMedGoogle Scholar
  9. 9.
    Cunningham BA, Hemperly JJ, Murray BA, Prediger EA, Brackenbury R, Edelman GM (1987) Neural cell adhesion molecule: structure, immunoglobulin-like domains, cell surface modulation, and alternative RNA splicing. Science 236:799–806CrossRefPubMedGoogle Scholar
  10. 10.
    Neiiendam JL, Køhler LB, Christensen C, Li S, Pedersen MV, Ditlevsen DK, Kornum MK, Kiselyov VV, Berezin V, Bock E (2004) An NCAM-derived FGF-receptor agonist, the FGL-peptide, induces neurite outgrowth and neuronal survival in primary rat neurons. J Neurochem 91:920–935CrossRefPubMedGoogle Scholar
  11. 11.
    Wainwright SR, Galea LA (2013) The neural plasticity theory of depression: assessing the roles of adult neurogenesis and PSA-NCAM within the hippocampus. Neural Plast 2013:805497CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Li S, Leshchyns’ka I, Chernyshova Y, Schachner M, Sytnyk V (2013) The neural cell adhesion molecule (NCAM) associates with and signals through p21-Activated Kinase 1 (Pak1). J Neurosci 33:790–790+CrossRefPubMedGoogle Scholar
  13. 13.
    Dallérac G, Rampon C, Doyère V (2013) NCAM function in the adult brain: lessons from mimetic peptides and therapeutic potential. Neurochem Res 38:1163–1173CrossRefPubMedGoogle Scholar
  14. 14.
    Walmod PS, Kolkova K, Berezin V, Bock E (2004) Zippers make signals: NCAM-mediated molecular interactions and signal transduction. Neurochem Res 29:2015–2035CrossRefPubMedGoogle Scholar
  15. 15.
    Soroka V, Kolkova K, Kastrup JS, Diederichs K, Breed J, Kiselyov VV, Poulsen FM, Larsen IK, Welte W, Berezin V, Bock E, Kasper C (2003) Structure and interactions of NCAM Ig1-2-3 suggest a novel zipper mechanism for homophilic adhesion. Structure 11:1291–1301CrossRefPubMedGoogle Scholar
  16. 16.
    Hansen SMM, Køhler LB, Li S, Kiselyov V, Christensen C, Owczarek S, Bock E, Berezin V (2008) NCAM-derived peptides function as agonists for the fibroblast growth factor receptor. J Neurochem 106:2030–2041PubMedGoogle Scholar
  17. 17.
    Burgess A, Saini S, Weng YQ, Aubert I (2009) Stimulation of choline acetyltransferase by C3d, a neural cell adhesion molecule ligand. J Neurosci Res 87:609–616CrossRefPubMedGoogle Scholar
  18. 18.
    Kiselyov VV, Li S, Berezin V, Bock E (2009) Insight into the structural mechanism of the bi-modal action of an NCAM mimetic, the C3 peptide. Neurosci Lett 452:224–227CrossRefPubMedGoogle Scholar
  19. 19.
    Hidese S, Hattori K, Sasayama D, Miyakawa T, Matsumura R, Yokota Y, Ishida I, Matsuo J, Noda T, Yoshida S, Teraishi T, Hori H, Ota M, Kunugi H (2017) Cerebrospinal fluid neural cell adhesion molecule levels and their correlation with clinical variables in patients with schizophrenia, bipolar disorder, and major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 76:12–18CrossRefPubMedGoogle Scholar
  20. 20.
    Murray HC, Low VF, Swanson ME, Dieriks BV, Turner C, Faull RL, Curtis MA (2016) Distribution of PSA-NCAM in normal, Alzheimer’s and Parkinson’s disease human brain. Neuroscience 330:359–375CrossRefPubMedGoogle Scholar
  21. 21.
    Doherty P, Fazeli MS, Walsh FS (1995) The neural cell adhesion molecule and synaptic plasticity. J Neurobiol 26:437–446CrossRefPubMedGoogle Scholar
  22. 22.
    Zhang S, Xia YY, Lim HC, Tang FR, Feng ZW (2010) NCAM-mediated locomotor recovery from spinal cord contusion injury involves neuroprotection, axon regeneration, and synaptogenesis. Neurochem Int 56:919–929CrossRefPubMedGoogle Scholar
  23. 23.
    An H, Zhou L, Yu Y, Fan H, Fan F, Tan S, Wang Z, Shi ZB, Yang J, Zhang F, Tan X, Huang Y XF (2018) Serum NCAM levels and cognitive deficits in first episode schizophrenia patients versus health controls. Schizophr Res 192:457–458CrossRefPubMedGoogle Scholar
  24. 24.
    Berezin V, Bock E (2004) NCAM mimetic peptides: pharmacological and therapeutic potential. J Mol Neurosci 22:33–39CrossRefPubMedGoogle Scholar
  25. 25.
    Berezin V, Bock E (2010) NCAM mimetic peptides: an update. Adv Exp Med Biol 663:337–353CrossRefPubMedGoogle Scholar
  26. 26.
    Xu R, Feyeux M, Julien S, Nemes C, Albrechtsen M, Dinnyés A, Krause K-H (2014) Screening of bioactive peptides using an embryonic stem cell-based neurodifferentiation assay. AAPS J 16:400–412CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Uhlig T, Kyprianou T, Martinelli FG, Oppici CA, Heiligers D, Hills D, Calvo XR, Verhaert P (2014) The emergence of peptides in the pharmaceutical business: from exploration to exploitation. EuPA Open Proteomics 4:58–69CrossRefGoogle Scholar
  28. 28.
    Li Y, Yu J (2015) Research progress in structure-activity relationship of bioactive peptides. J Med Food 18:147–156CrossRefPubMedGoogle Scholar
  29. 29.
    Agyei D, Danquah MK (2011) Industrial-scale manufacturing of pharmaceutical-grade bioactive peptides. Biotechnol Adv 29:272–277CrossRefPubMedGoogle Scholar
  30. 30.
    Rønn LCB, Doherty P, Holm A, Berezin V, Bock E (2000) Neurite outgrowth induced by a synthetic peptide ligand of neural cell adhesion molecule requires fibroblast growth factor receptor activation. J Neurochem 75:665–671CrossRefPubMedGoogle Scholar
  31. 31.
    Kiryushko D, Kofoed T, Skladchikova G, Holm A, Berezin V, Bock E (2003) A synthetic peptide ligand of neural cell adhesion molecule (NCAM), C3d, promotes neuritogenesis and synaptogenesis and modulates presynaptic function in primary cultures of rat hippocampal neurons. J Biol Chem 278:12325–12334CrossRefPubMedGoogle Scholar
  32. 32.
    Ronn LCB, Olsen M, Ostergaard S, Kiselyov V, Berezin V, Mortensen MT, Lerche MH, Jensen PH, Soroka V, Saffells JL, Doherty P, Poulsen FM, Bock E, Holm A (1999) Identification of a neuritogenic ligand of the neural cell adhesion molecule using a combinatorial library of synthetic peptides. Nat Biotech 17:1000–1005CrossRefGoogle Scholar
  33. 33.
    Ditlevsen DK, Køhler LB, Pedersen MV, Risell M, Kolkova K, Meyer M, Berezin V, Bock E (2003) The role of phosphatidylinositol 3-kinase in neural cell adhesion molecule-mediated neuronal differentiation and survival. J Neurochem 84:546–556CrossRefPubMedGoogle Scholar
  34. 34.
    Mie M, Sasaki S, Kobatake E (2014) Construction of a bFGF-tethered multi-functional extracellular matrix protein through coiled-coil structures for neurite outgrowth induction. Biomed Mater 9:015004CrossRefPubMedGoogle Scholar
  35. 35.
    Sakai A, Asada M, Seno N, Suzuki H (2008) Involvement of neural cell adhesion molecule signaling in glial cell line-derived neurotrophic factor-induced analgesia in a rat model of neuropathic pain. Pain 137:378–388CrossRefPubMedGoogle Scholar
  36. 36.
    Klementiev B, Bichevaja N, Novikova T, Chebotar N, Bock E, Berezin V (2002) A peptide agonist of the neural cell adhesion molecule (NCAM), C3, protects against developmental defects induced by a teratogen pyrimethamine. Int J Dev Neurosci 20:527–536CrossRefPubMedGoogle Scholar
  37. 37.
    Foley AG, Hartz BP, Gallagher HC, Ronn LC, Berezin V, Bock E, Regan CM (2000) A synthetic peptide ligand of neural cell adhesion molecule (NCAM) IgI domain prevents NCAM internalization and disrupts passive avoidance learning. J Neurochem 74:2607–2613CrossRefPubMedGoogle Scholar
  38. 38.
    Hartz BP, Søhoel A, Berezin V, Bock E, Scheel-Krüger J (2003) A synthetic peptide ligand of NCAM affects exploratory behavior and memory in rodents. Pharmacol Biochem Behav 75:861–867CrossRefPubMedGoogle Scholar
  39. 39.
    Cambon K, Venero C, Berezin V, Bock E, Sandi C (2003) Post-training administration of a synthetic peptide ligand of the neural cell adhesion molecule, C3d, attenuates long-term expression of contextual fear conditioning. Neuroscience 122:183–191CrossRefPubMedGoogle Scholar
  40. 40.
    Kohler LB, Soroka V, Korshunova I, Berezin V, Bock E (2010) A peptide derived from a trans-homophilic binding site in neural cell adhesion molecule induces neurite outgrowth and neuronal survival. J Neurosci Res 88:2165–2176CrossRefPubMedGoogle Scholar
  41. 41.
    Kraev I, Henneberger C, Rossetti C, Conboy L, Kohler LB, Fantin M, Jennings A, Venero C, Popov V, Rusakov D, Stewart MG, Bock E, Berezin V, Sandi C (2011) A peptide mimetic targeting trans-homophilic NCAM binding sites promotes spatial learning and neural plasticity in the hippocampus. PLoS ONE 6:e23433CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Zellinger C, Hadamitzky M, Bock E, Berezin V, Potschka H (2011) Impact of the NCAM derived mimetic peptide plannexin on the acute cellular consequences of a status epilepticus. Neurosci Lett 501:173–178CrossRefPubMedGoogle Scholar
  43. 43.
    Cambon K, Hansen SM, Venero C, Herrero AI, Skibo G, Berezin V, Bock E, Sandi C (2004) A synthetic neural cell adhesion molecule mimetic peptide promotes synaptogenesis, enhances presynaptic function, and facilitates memory consolidation. J Neurosci 24:4197–4204CrossRefPubMedGoogle Scholar
  44. 44.
    Dallerac G, Zerwas M, Novikova T, Callu D, Leblanc-Veyrac P, Bock E, Berezin V, Rampon C, Doyere V (2011) The neural cell adhesion molecule-derived peptide FGL facilitates long-term plasticity in the dentate gyrus in vivo. Learn Mem 18:306–313CrossRefPubMedGoogle Scholar
  45. 45.
    Knafo S, Venero C, Sanchez-Puelles C, Pereda-Perez I, Franco A, Sandi C, Suarez LM, Solis JM, Alonso-Nanclares L, Martin ED, Merino-Serrais P, Borcel E, Li S, Chen Y, Gonzalez-Soriano J, Berezin V, Bock E, Defelipe J, Esteban JA (2012) Facilitation of AMPA receptor synaptic delivery as a molecular mechanism for cognitive enhancement. PLoS Biol 10:e1001262CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Downer EJ, Cowley TR, Cox F, Maher FO, Berezin V, Bock E, Lynch MA (2009) A synthetic NCAM-derived mimetic peptide, FGL, exerts anti-inflammatory properties via IGF-1 and interferon-gamma modulation. J Neurochem 109:1516–1525CrossRefPubMedGoogle Scholar
  47. 47.
    Ojo B, Rezaie P, Gabbott PL, Cowely TR, Medvedev NI, Lynch MA, Stewart MG (2011) A neural cell adhesion molecule-derived peptide, FGL, attenuates glial cell activation in the aged hippocampus. Exp Neurol 232:318–328CrossRefPubMedGoogle Scholar
  48. 48.
    Cox FF, Berezin V, Bock E, Lynch MA (2013) The neural cell adhesion molecule-derived peptide, FGL, attenuates lipopolysaccharide-induced changes in glia in a CD200-dependent manner. Neuroscience 235:141–148CrossRefPubMedGoogle Scholar
  49. 49.
    Skibo GG, Lushnikova IV, Voronin KY, Dmitrieva O, Novikova T, Klementiev B, Vaudano E, Berezin VA, Bock E (2005) A synthetic NCAM-derived peptide, FGL, protects hippocampal neurons from ischemic insult both in vitro and in vivo. Eur J Neurosci 22:1589–1596CrossRefPubMedGoogle Scholar
  50. 50.
    Pedersen MV, Helweg-Larsen RB, Nielsen FC, Berezin V, Bock E, Penkowa M (2008) The synthetic NCAM-derived peptide, FGL, modulates the transcriptional response to traumatic brain injury. Neurosci Lett 437:148–153CrossRefPubMedGoogle Scholar
  51. 51.
    Corbett NJ, Gabbott PL, Klementiev B, Davies HA, Colyer FM, Novikova T, Stewart MG (2013) Amyloid-beta induced CA1 pyramidal cell loss in young adult rats is alleviated by systemic treatment with FGL, a neural cell adhesion molecule-derived mimetic peptide. PLoS ONE 8:e71479CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Secher T, Novitskaia V, Berezin V, Bock E, Glenthoj B, Klementiev B (2006) A neural cell adhesion molecule-derived fibroblast growth factor receptor agonist, the FGL-peptide, promotes early postnatal sensorimotor development and enhances social memory retention. Neuroscience 141:1289–1299CrossRefPubMedGoogle Scholar
  53. 53.
    Turner CA, Gula EL, Taylor LP, Watson SJ, Akil H (2008) Antidepressant-like effects of intracerebroventricular FGF2 in rats. Brain Res 1224:63–68CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Secher T, Berezin V, Bock E, Glenthoj B (2009) Effect of an NCAM mimetic peptide FGL on impairment in spatial learning and memory after neonatal phencyclidine treatment in rats. Behav Brain Res 199:288–297CrossRefPubMedGoogle Scholar
  55. 55.
    Klein R, Blaschke S, Neumaier B, Endepols H, Graf R, Keuters M, Hucklenbroich J, Albrechtsen M, Rees S, Fink GR, Schroeter M, Rueger MA (2014) The synthetic NCAM mimetic peptide FGL mobilizes neural stem cells in vitro and in vivo. Stem Cell Rev 10:539–547CrossRefPubMedGoogle Scholar
  56. 56.
    Klein R, Mahlberg N, Ohren M, Ladwig A, Neumaier B, Graf R, Hoehn M, Albrechtsen M, Rees S, Fink GR, Rueger MA, Schroeter M (2016) The neural cell adhesion molecule-derived (NCAM)-peptide FG loop (FGL) mobilizes endogenous neural stem cells and promotes endogenous regenerative capacity after stroke. J Neuroimmune Pharmacol 11:708–720CrossRefPubMedGoogle Scholar
  57. 57.
    Anderson AA, Kendal CE, Garcia-Maya M, Kenny AV, Morris-Triggs SA, Wu T, Reynolds R, Hohenester E, Saffell JL (2005) A peptide from the first fibronectin domain of NCAM acts as an inverse agonist and stimulates FGF receptor activation, neurite outgrowth and survival. J Neurochem 95:570–583CrossRefPubMedGoogle Scholar
  58. 58.
    Jacobsen J, Kiselyov V, Bock E, Berezin V (2008) A peptide Motif from the second fibronectin module of the neural cell adhesion molecule, NCAM, NLIKQDDGGSPIRHY, is a binding site for the FGF receptor. Neurochem Res 33:2532–2539CrossRefPubMedGoogle Scholar
  59. 59.
    Kulahin N, Rudenko O, Kiselyov V, Poulsen FM, Berezin V, Bock E (2005) Modulation of the homophilic interaction between the first and second Ig modules of neural cell adhesion molecule by heparin. J Neurochem 95:46–55CrossRefPubMedGoogle Scholar
  60. 60.
    Ronn LCB, Olsen M, Soroka V, Ostergaard S, Dissing S, Poulsen FM, Holm A, Berezin V, Bock E (2002) Characterization of a novel NCAM ligand with a stimulatory effect on neurite outgrowth identified by screening a combinatorial peptide library. Eur J Neurosci 16:1720–1730CrossRefPubMedGoogle Scholar
  61. 61.
    Kohler LB, Christensen C, Rossetti C, Fantin M, Sandi C, Bock E, Berezin V (2010) Dennexin peptides modeled after the homophilic binding sites of the neural cell adhesion molecule (NCAM) promote neuronal survival, modify cell adhesion and impair spatial learning. Eur J Cell Biol 89:817–827CrossRefPubMedGoogle Scholar
  62. 62.
    Kiselyov VV, Skladchikova G, Hinsby AM, Jensen PH, Kulahin N, Soroka V, Pedersen N, Tsetlin V, Poulsen FM, Berezin V, Bock E (2003) Structural basis for a direct interaction between FGFR1 and NCAM and evidence for a regulatory role of ATP. Structure 11:691–701CrossRefPubMedGoogle Scholar
  63. 63.
    Chen Y, Li S, Berezin V, Bock E (2010) The fibroblast growth factor receptor (FGFR) agonist FGF1 and the neural cell adhesion molecule-derived peptide FGL activate FGFR substrate 2alpha differently. J Neurosci Res 88:1882–1889PubMedGoogle Scholar
  64. 64.
    Dailey L, Ambrosetti D, Mansukhani A, Basilico C (2005) Mechanisms underlying differential responses to FGF signaling. Cytokine Growth Factor Rev 16:233–247CrossRefPubMedGoogle Scholar
  65. 65.
    Aonurm-Helm A, Berezin V, Bock E, Zharkovsky A (2010) NCAM-mimetic, FGL peptide, restores disrupted fibroblast growth factor receptor (FGFR) phosphorylation and FGFR mediated signaling in neural cell adhesion molecule (NCAM)-deficient mice. Brain Res 1309:1–8CrossRefPubMedGoogle Scholar
  66. 66.
    Klementiev B, Novikova T, Novitskaya V, Walmod PS, Dmytriyeva O, Pakkenberg B, Berezin V, Bock E (2007) A neural cell adhesion molecule-derived peptide reduces neuropathological signs and cognitive impairment induced by Abeta25-35. Neuroscience 145:209–224CrossRefPubMedGoogle Scholar
  67. 67.
    Bhat RV, Budd Haeberlein SL, Avila J (2004) Glycogen synthase kinase 3: a drug target for CNS therapies. J Neurochem 89:1313–1317CrossRefPubMedGoogle Scholar
  68. 68.
    Downer EJ, Cowley TR, Lyons A, Mills KH, Berezin V, Bock E, Lynch MA (2010) A novel anti-inflammatory role of NCAM-derived mimetic peptide, FGL. Neurobiol Aging 31:118–128CrossRefPubMedGoogle Scholar
  69. 69.
    Popov VI, Medvedev NI, Kraev IV, Gabbott PL, Davies HA, Lynch M, Cowley TR, Berezin V, Bock E, Stewart MG (2008) A cell adhesion molecule mimetic, FGL peptide, induces alterations in synapse and dendritic spine structure in the dentate gyrus of aged rats: a three-dimensional ultrastructural study. Eur J Neurosci 27:301–314CrossRefPubMedGoogle Scholar
  70. 70.
    Borcel E, Perez-Alvarez L, Herrero AI, Brionne T, Varea E, Berezin V, Bock E, Sandi C, Venero C (2008) Chronic stress in adulthood followed by intermittent stress impairs spatial memory and the survival of newborn hippocampal cells in aging animals: prevention by FGL, a peptide mimetic of neural cell adhesion molecule. Behav Pharmacol 19:41–49CrossRefPubMedGoogle Scholar
  71. 71.
    Aonurm-Helm A, Jurgenson M, Zharkovsky T, Sonn K, Berezin V, Bock E, Zharkovsky A (2008) Depression-like behaviour in neural cell adhesion molecule (NCAM)-deficient mice and its reversal by an NCAM-derived peptide, FGL. Eur J Neurosci 28:1618–1628CrossRefPubMedGoogle Scholar
  72. 72.
    Anand R, Seiberling M, Kamtchoua T, Pokorny R (2007) Tolerability, safety and pharmacokinetics of the FGLL peptide, a novel mimetic of neural cell adhesion molecule, following intranasal administration in healthy volunteers. Clin Pharmacokinet 46:351–358CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of NeurologyDalian Municipal Central Hospital Affiliated to Dalian Medical UniversityDalianChina
  2. 2.Russell H. Morgan Department of Radiology and Radiological Science, Division of MR ResearchThe Johns Hopkins University School of MedicineBaltimoreUSA
  3. 3.Department of Neurological RehabilitationThe Second Hospital of Dalian Medical UniversityDalianChina

Personalised recommendations