Advertisement

Neurochemical Research

, Volume 43, Issue 9, pp 1766–1778 | Cite as

Association of Induced Hyperhomocysteinemia with Alzheimer’s Disease-Like Neurodegeneration in Rat Cortical Neurons After Global Ischemia-Reperfusion Injury

  • Maria Kovalska
  • Barbara Tothova
  • Libusa Kovalska
  • Zuzana Tatarkova
  • Dagmar Kalenska
  • Anna Tomascova
  • Marian Adamkov
  • Jan Lehotsky
Original Paper

Abstract

Alzheimer’s disease (AD) is a progressive and irreversible neurodegenerative disorder that results in massive hippocampal and neocortical neuronal loss leading to dementia and eventual death. The exact cause of Alzheimer’s disease is not fully explored, although a number of risk factors have been recognized, including high plasma concentration of homocysteine (Hcy). Hyperhomocysteinemia (hHcy) is considered a strong, independent risk factor for stroke and dementia. However, the molecular background underlying these mechanisms linked with hHcy and ischemic stroke is not fully understood. Paper describes rat model of global forebrain ischemia combined with the experimentally induced hHcy. Global ischemia-reperfusion injury (IRI) was developed by 4-vessels occlusion lasting for 15 min followed by reperfusion period of 72 h. hHcy was induced by subcutaneous injection of 0.45 µmol/g of Hcy in duration of 14 days. The results showed remarkable neural cell death induced by hHcy in the brain cortex and neurodegeneration is further aggravated by global IRI. We demonstrated degeneration of cortical neurons, alterations in number and morphology of tissue astrocytes and dysregulation of oxidative balance with increased membrane protein oxidation. Complementary to, an immunohistochemical analysis of tau protein and β-amyloid peptide showed that combination of hHcy with the IRI might lead to the progression of AD-like pathological features. Conclusively, these findings suggest that combination of risk factor hHcy with IRI aggravates neurodegeneration processes and leads to development of AD-like pathology in cerebral cortex.

Keywords

Alzheimer’s disease Homocysteine Brain ischemia β-Amyloid peptide 

Notes

Acknowledgements

This study was supported by Grants VEGA 1/0171/18, VEGA 1/0128/16, APVV 15/0107 from the Ministry of Education of the Slovak Republic, and by project “Identification of novel markers in diagnostic panel of neurological diseases” code: 26220220114, co-financed from EU sources and European Regional Development Fund. The authors are grateful to Mrs. Greta Kondekova and Mrs. Agata Resetarova for their excellent help with immunohistochemical and histological procedures.

References

  1. 1.
    Pluta R, Ułamek M, Jabłonski M (2009) Alzheimer’s mechanisms in ischemic brain degeneration. Anat Rec 292:1863–1881.  https://doi.org/10.1002/ar.21018 CrossRefGoogle Scholar
  2. 2.
    Honig LS, Tang MX, Albert S, Costa R, Luchsinger J, Manly J, Stern Y, Mayeux R (2003) Stroke and the risk of Alzheimer disease. Arch Neuro 60/12:1707–1712.  https://doi.org/10.1001/archneur.60.12.1707 CrossRefGoogle Scholar
  3. 3.
    Pluta R, Jabłoński M, Czuczwar SJ (2012) Postischemic dementia with Alzheimer phenotype: selectively vulnerable versus resistant areas of the brain and neurodegeneration versus β-amyloid peptide. Folia Neuropathol 50:101–109. (PMID: 22773455)PubMedGoogle Scholar
  4. 4.
    Dorszewska J, Florczak-Wyspiańska J, Oczkowska A, Dezor M, Prendecki M, Kozubski W (2013) Homocysteine and asymmetric dimethylarginine concentrations in the plasma of Alzheimer’s disease patients with varying degrees of dementia. Adv Alzheimer’s Dis 2/1:1–6.  https://doi.org/10.4236/aad.2013.21001 CrossRefGoogle Scholar
  5. 5.
    Kocki J, Ułamek-Kozioł M, Bogucka-Kocka A A et al (2015) Dysregulation of amyloid-protein precursor,-secretase, presenilin 1 and 2 genes in the rat selectively vulnerable CA1 subfield of hippocampus following transient global brain ischemia. J Alzheimers Dis 47:1047–1056.  https://doi.org/10.3233/JAD-150299 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Pluta R, Kocki J, Ułamek-Kozioł M, Petniak A, Gil-Kulik P, Januszewski S, Bogucki J, Jabłoński M, Brzozowska J, Furmaga-Jabłońska M, Bogucka-Kocka A, Czuczwar SJ (2016) Discrepancy in expression of β-secretase and amyloid-β protein precursor in Alzheimer-related genes in the rat medial temporal lobe cortex following transient global brain ischemia. J Alzheimers Dis 51:1023–1031.  https://doi.org/10.3233/JAD-151102 CrossRefPubMedGoogle Scholar
  7. 7.
    Lehotský J, Tothová B, Kovalská M, Dobrota D, Beňová A, Kalenská D, Kaplán P (2016) Role of homocysteine in the ischemic stroke and development of ischemic tolerance. Front Neurosci 10:538.  https://doi.org/10.3389/fnins.2016.00538 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Petráš M, Drgová A, Kovalská M et al (2017) Effect of hyperhomocysteinemia on redox balance and redox defence enzymes in ischemia-reperfusion injury and/or after ischemic preconditioning in rats. Cell Mol Neurobiol 37/8:1417–1431.  https://doi.org/10.1007/s10571-017-0473-5 CrossRefGoogle Scholar
  9. 9.
    Dabidi RV, Hosseinzadeh S, Mahjoub S, Hosseinzadeh M, Myers J (2013) Endurance exercise training and diferuloyl methane supplement: changes in neurotrophic factor and oxidative stress induced by lead in rat brain. Biol Sport 30:41–46.  https://doi.org/10.5604/20831862.1029820 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Persson T, Popescu BO, Cedazo-Minguez A (2014) Oxidative stress in Alzheimer’s disease: why did antioxidant therapy fail? Oxid Med Cell Longev 2014:427318.  https://doi.org/10.1155/2014/427318 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Choe YM, Sohn BK, Choi HJ, Byun MS, Seo EH, Han JY et al (2014) Association of homocysteine with hippocampal volume independent of cerebral amyloid and vascular burden. Neurobiol Aging 35:1519–1525.  https://doi.org/10.1016/j.neurobiolaging.2014.01.013 CrossRefPubMedGoogle Scholar
  12. 12.
    Li JG, Chu J, Barrero C, Merali S, Praticó D (2014) Homocysteine exacerbates β-amyloid pathology, tau pathology, and cognitive deficit in a mouse model of Alzheimer disease with plaques and tangles. Ann Neurol 75/6:851–863.  https://doi.org/10.1002/ana.24145 CrossRefGoogle Scholar
  13. 13.
    Nilsson K, Gustafson L, Hultberg B (2006) Plasma homocysteine, cobalamin/folate status, and vascular disease in a large population of psychogeriatric patients. Dement Geriatr Cogn Disord 22:358–366.  https://doi.org/10.1159/000095626 CrossRefPubMedGoogle Scholar
  14. 14.
    Tabet N, Rafi H, Weaving G, Lyons B, Iversen SA (2006) Behavioural and psychological symptoms of Alzheimer type dementia are not correlated with plasma homocysteine concentration. Dement Geriatr Cogn Disord 22:432–438.  https://doi.org/10.1159/000095802 CrossRefPubMedGoogle Scholar
  15. 15.
    Streck EL, Matte C, Vieira PS, Rombaldi F, Wannmacher CMD, Wajner M, Wyse ATS (2002) Reduction of Na+,K+-ATPase activity in hippocampus of rats subjected to chemically-induced hyperhomocysteinemia. Neurochem Res 27/12:1593–1598.  https://doi.org/10.1023/A:1021670607647 CrossRefGoogle Scholar
  16. 16.
    Kovalska M, Kovalska L, Tothova B, Mahmood S, Adamkov M, Lehotsky J (2015) Combination of hyperhomocysteinemia and ischemic tolerance in experimental model of global ischemia in rats. J Physiol Pharmacol 66:887–897 (PMID:26769838)PubMedGoogle Scholar
  17. 17.
    Nakano S, Kogure K, Fujikura H (1990) Ischemia-induced slowly progressive neuronal damage in the rat brain. Neuroscience 38/1:115–124.  https://doi.org/10.1016/0306-4522(90)90378-H CrossRefGoogle Scholar
  18. 18.
    Zhu H, Yoshimoto T, Imajo-Ohmi S, Dazortsava M, Mathivanan A, Yamashima T (2012) Why are hippocampal CA1 neurons vulnerable but motor cortex neurons resistant to transient ischemia? J Neurochem 120/4:574–585.  https://doi.org/10.1111/j.1471-4159.2011.07550.x CrossRefGoogle Scholar
  19. 19.
    Pluta R, Bogucka-Kocka A, Ułamek-Kozioł M et al (2018) Ischemic tau protein gene induction as an additional key factor driving development of Alzheimer’s phenotype changes in CA1 area of hippocampus in an ischemic model of Alzheimer’s disease. Pharmacol Rep.  https://doi.org/10.1016/j.pharep.2018.03.004 PubMedCrossRefGoogle Scholar
  20. 20.
    Ułamek-Kozioł M, Janusz Kocki J, Anna Bogucka-Kocka A et al (2016) Dysregulation of autophagy, mitophagy, and apoptotic genes in the medial temporal lobe cortex in an ischemic model of Alzheimer’s disease. J Alzheimers Dis 54/1:113–121.  https://doi.org/10.3233/JAD-160387 CrossRefGoogle Scholar
  21. 21.
    Ułamek-Kozioł M, Kocki J, Bogucka-Kocka A, Januszewski S, Bogucki J, Czuczwar SJ, Pluta R (2017) Autophagy, mitophagy and apoptotic gene changes in the hippocampal CA1 area in a rat ischemic model of Alzheimer’s disease. Pharmacol Rep 69/6:1289–1294.  https://doi.org/10.1016/j.pharep.2017.07.015 CrossRefGoogle Scholar
  22. 22.
    Pulsinelli WA, Brierley JB, Plum F (1982) Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 11/5:491–498.  https://doi.org/10.1002/ana.410110509 CrossRefGoogle Scholar
  23. 23.
    Matte C, Mussulini BH, dos Santos TM et al (2010) Hyperhomocysteinemia reduces glutamate uptake in parietal cortex of rats. Int J Dev Neurosci 28:183–187.  https://doi.org/10.1016/j.ijdevneu.2009.11.004 CrossRefPubMedGoogle Scholar
  24. 24.
    Martins PJ, Galdieri LC, Souza FG, Andersen ML, Benedito-Silva AA, Tufik S, D’Almeida V (2005) Physiological variation in plasma total homocysteine concentrations in rats. Life Sci 76/22:2621–2629.  https://doi.org/10.1016/j.lfs.2004.12.011 CrossRefGoogle Scholar
  25. 25.
    Kovalska M, Kovalska L, Pavlikova M, Janickova M, Mikuskova K, Adamkov M, Kaplan P, Tatarkova Z, Lehotsky J (2012) Intracellular signaling MAPK pathway after cerebral ischemia-reperfusion injury. Neurochem Res 37:1568–1577.  https://doi.org/10.1007/s11064-012-0752-y CrossRefPubMedGoogle Scholar
  26. 26.
    Weekman EM, Woolums AE, Sudduth TL, Wilcock DM (2017) Hyperhomocysteinemia-induced gene expression changes in the cell types of the brain. ASN Neuro.  https://doi.org/10.1177/1759091417742296 PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Paxinos G, Watson C (2006) The rat brain in stereotaxic coordinates. Academic Press, London. http://www.scribd.com/doc/22822097/Rat-Brain-Atlas
  28. 28.
    Anderson KJ, Fugaccia I, Scheff SW (2003) Fluoro-Jade B stains quiescent and reactive astrocytes in the rodent spinal cord. J Neurotrauma 20/11:1223–1231.  https://doi.org/10.1089/089771503770802899 CrossRefGoogle Scholar
  29. 29.
    Colombo JA, Puissant VI (2002) Fluoro Jade Stains early and reactive astroglia in the primate cerebral cortex. J Histochem Cytochem 50:1135–1137.  https://doi.org/10.1177/002215540205000815 CrossRefPubMedGoogle Scholar
  30. 30.
    Blanco-Suárez E, Fiuza M, Liu X, Chakkarapani E, Hanley JG (2014) Differential Tiam1/Rac1 activation in hippocampal and cortical neurons mediates differential spine shrinkage in response to oxygen/glucose deprivation. J Cereb Blood Flow Metab 34/12:1898–1906.  https://doi.org/10.1038/jcbfm.2014.158 CrossRefGoogle Scholar
  31. 31.
    Zhao Y, Huang G, Chen S, Gou Y, Dong Z, Zhang X (2016) Homocysteine aggravates cortical neural cell injury through neuronal autophagy overactivation following rat cerebral ischemia-reperfusion. Int J Mol Sci 17:1196.  https://doi.org/10.3390/ijms17081196 CrossRefPubMedCentralGoogle Scholar
  32. 32.
    Arendt T, Brückner MK, Morawski M, Jäger C, Gertz HJ (2015) Early neurone loss in Alzheimer’s disease: cortical or subcortical? Acta Neuropathologica Commun 3:10.  https://doi.org/10.1186/s40478-015-0187-1 CrossRefGoogle Scholar
  33. 33.
    Firbank MJ, Narayan SK, Saxby BK, Ford GA, O’Brien JT (2010) Homocysteine is associated with hippocampal and white matter atrophy in older subjects with mild hypertension. Int Psychogeriatr 5:804–811.  https://doi.org/10.1017/S1041610210000499 CrossRefGoogle Scholar
  34. 34.
    Chen S, Dong Z, Zhao Y, Sai N, Wang X, Liu H, Huang G, Zhang Y (2017) Homocysteine induces mitochondrial dysfunction involving the crosstalk between oxidative stress and mitochondrial pSTAT3 in rat ischemic brain. Sci Rep 7:6932.  https://doi.org/10.1038/s41598-017-07112-z CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Jakubowski H (2013) Homocysteine in protein structure/function and human disease. Springer, Wien, pp 7–18.  https://doi.org/10.1007/978-3-7091-1410-0 CrossRefGoogle Scholar
  36. 36.
    Kamat PK, Kalani A, Tyagi SC, Tyagi N (2015) Hydrogen sulfide epigenetically attenuates homocysteine-induced mitochondrial toxicity mediated through NMDA receptor in mouse brain endothelial (bEnd3) cells. J Cell Physiol 230:378–394.  https://doi.org/10.1002/jcp.24722 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Nagotani ST, Hayashi T, Sato K, Zhang W, Deguchi K, Nagano I, Shoji M, Abe K (2005) Reduction of cerebral infarction in stroke-prone spontaneously hypertensive rats by statins associated with amelioration of oxidative stress. Stroke 36:670–672.  https://doi.org/10.1161/01.STR.0000155732.27333.3c CrossRefPubMedGoogle Scholar
  38. 38.
    Okun E, Arumugam TV, Tang S, Gleichmann M, Albeck M, Sredni B, Mattson MP (2007) The organotellurium compound ammonium trichloro(dioxoethylene-0,00) tellurate enhances neuronal survival and improves functional outcome in an ischemic stroke model in mice. J Neurochem 102:1232–1241.  https://doi.org/10.1111/j.1471-4159.2007.04615.x CrossRefPubMedGoogle Scholar
  39. 39.
    Lee WC, Wong HY, Chai YY, Shi CW, Amino N, Kikuchi S, Huang SH (2012) Lipid peroxidation dysregulation in ischemic stroke: plasma 4-HNE as a potential biomarker? Biochem Biophys Res Commun 425:842–847.  https://doi.org/10.1016/j.bbrc.2012.08.002 CrossRefPubMedGoogle Scholar
  40. 40.
    Chondrogianni N, Petropoulos I, Grimm S, Georgila K, Catalgol B, Friguet B, Grune T, Gonos ES (2014) Protein damage, repair and proteolysis. Mol Aspects Med 35:1–71.  https://doi.org/10.1016/j.mam.2012.09.001 CrossRefPubMedGoogle Scholar
  41. 41.
    Dayal S, Lentz SR (2005) ADMA and hyperhomocysteinemia. Vasc Med 10:S27–S33 (PMID: 12816782)CrossRefPubMedGoogle Scholar
  42. 42.
    Li JG, Barrero C, Sapna Gupta S, Kruger WD, Merali S, Domenico Pratico D (2017) Homocysteine modulates 5-lipoxygenase expression level via DNA methylation. Aging Cell 16/2:273–280.  https://doi.org/10.1111/acel.12550 CrossRefGoogle Scholar
  43. 43.
    McCaddon A, Hudson P, Hill D, Barber J, Lloyd A, Davies G, Regland B (2003) Alzheimer’s disease and total plasma aminothiols. Biol Psychiarty 53:254–260.  https://doi.org/10.1016/S0006-3223(02)01451-8 CrossRefGoogle Scholar
  44. 44.
    Poddar R, Paul S (2009) Homocysteine-NMDA receptor-mediated activation of extracellular signal-regulated kinase leads to neuronal cell death. J Neurochem 110/3:1095–1106.  https://doi.org/10.1111/j.1471-4159.2009.06207.x CrossRefGoogle Scholar
  45. 45.
    Kim SJ, Lee BH, Kim YM, Kim GH, Yoo HW (2013) Congenital MTHFR deficiency causing early-onset cerebral stroke in a case homozygous for MTHFR thermolabile variant. Metab Brain Dis 28:519–522.  https://doi.org/10.1007/s11011-013-9398-y CrossRefPubMedGoogle Scholar
  46. 46.
    Longoni A, Bellaver B, Bobermin LD, Santos CL, Nonose Y, Kolling J, Dos Santos TM, de Assis AM, Quincozes-Santos A, Wyse ATS (2018) Homocysteine induces glial reactivity in adult rat astrocyte cultures. Mol Neurobiol 55/3:1966–1976.  https://doi.org/10.1007/s12035-017-0463-0 CrossRefGoogle Scholar
  47. 47.
    Buffo A, Rolando C, Ceruti S (2010) Astrocytes in the damaged brain: molecular and cellular insights into their reactive response and healing potential. Biochem Pharmacol 79/2:77–89.  https://doi.org/10.1016/j.bcp.2009.09.014 CrossRefGoogle Scholar
  48. 48.
    Loureiro SO, Roma˜o L, Alves T, Fonseca A, Heimfarth L, Moura Neto V, Wyse AT, Pessoa-Pureur R (2010) Homocysteine induces cytoskeletal remodeling and production of reactive oxygen species in cultured cortical astrocytes. Brain Res 1355:151–164.  https://doi.org/10.1016/j.brainres.2010.07.071 CrossRefPubMedGoogle Scholar
  49. 49.
    Pluta R, Furmaga-Jabłońska W, Maciejewski R, Ułamek-Kozioł M, Jabłoński M (2013) Brain ischemia activates β- and γ-secretase cleavage of amyloid precursor protein: significance in sporadic Alzheimer’s disease. Mol Neurobiol 47:425–434.  https://doi.org/10.1007/s12035-012-8360-z CrossRefPubMedGoogle Scholar
  50. 50.
    Pluta R, Kocki J, Ułamek-Kozioł M, Bogucka-Kocka A, Gil-Kulik P, Januszewski S, Jabłoński M, Petniak A, Brzozowska J, Bogucki J, Furmaga-Jabłońska W, Czuczwar SJ (2016) Alzheimer-associated presenilin 2 gene is dysregulated in rat medial temporal lobe cortex after complete brain ischemia due to cardiac arrest. Pharmacol Rep 68:155–161.  https://doi.org/10.1016/j.pharep.2015.08.002 CrossRefPubMedGoogle Scholar
  51. 51.
    Pluta R, Kida E, Lossinsky AS, Golabek AA, Mossakowski MJ, Wisniewski HM (1994) Complete cerebral ischemia with short-term survival in rats induced by cardiac arrest. I. Extracellular accumulation of Alzheimer’s β-amyloid protein precursor in the brain. Brain Res 649:323–328CrossRefPubMedGoogle Scholar
  52. 52.
    Pacheco-Quinto J, Rodriguez de Turco EB, DeRosa S et al (2006) Hyperhomocysteinemic Alzheimer’s mouse model of amyloidosis shows increased brain amyloid beta peptide levels. Neurobiol Dis 22:651–656.  https://doi.org/10.1016/j.nbd.2006.01.005 CrossRefPubMedGoogle Scholar
  53. 53.
    Zhuo JM, Portugal GS, Kruger WD et al (2010) Diet-induced hyperhomocysteinemia increases amyloid-beta formation and deposition in a mouse model of Alzheimer’s disease. Curr Alzheimer Res 7:140–149.  https://doi.org/10.2174/156720510790691326 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Sudduth TL, Powell DK, Smith CD, Greenstein A, Wilcock DM (2013) Induction of hyperhomocysteinemia models vascular dementia by induction of cerebral microhemorrhages and neuroinflammation. J Cereb Blood Flow Metab 33:708–715.  https://doi.org/10.1038/jcbfm.2013.1 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Reed BR, Mungas DM, Kramer JH, Ellis W, Vinters HV, Zarow C, Jagust WJ, Chui HC (2007) Profiles of neuropsychological impairment in autopsy-defined Alzheimer’s disease and cerebrovascular disease. Brain 130/3:731–739.  https://doi.org/10.1093/brain/awl385 CrossRefGoogle Scholar
  56. 56.
    Shirafuji N, Hamano T, Yen SH, Kanaan NM, Yoshida H, Hayashi K, Ikawa M, Yamamura O, Kuriyama M, Yasunari Nakamoto Y (2018) Homocysteine increases tau phosphorylation, truncation and oligomerization. Int. J. Mol. Sci.  https://doi.org/10.3390/ijms19030891 PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Leon M, Sawmiller D, Shytle RD, Tan J (2018) Therapeutic cocktail approach fortreatment of hyperhomocysteinemia in Alzheimer’s disease. Cell Med 10:1–6.  https://doi.org/10.1177/2155179017722280 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Jessenius Faculty of Medicine in Martin, Institute of Histology and EmbryologyComenius University in BratislavaMartinSlovakia
  2. 2.BioMed, Division of Oncology, Jessenius Faculty of Medicine in MartinComenius University in BratislavaMartinSlovakia
  3. 3.Jessenius Faculty of Medicine in Martin, Institute of Medical BiochemistryComenius University in BratislavaMartinSlovakia
  4. 4.Jessenius Faculty of Medicine in MartinComenius University in Bratislava, Clinic of Stomatology and Maxillofacial SurgeryMartinSlovakia
  5. 5.BioMed, Division of Neurosciences, Jessenius Faculty of Medicine in MartinComenius University in BratislavaMartinSlovakia
  6. 6.Jessenius Faculty of Medicine, Institute of Medical Biochemistry and BioMedComenius UniversityMartinSlovakia

Personalised recommendations