Neurochemical Research

, Volume 43, Issue 8, pp 1692–1701 | Cite as

Regulation of Glycogen Content in Astrocytes via Cav-1/PTEN/AKT/GSK-3β Pathway by Three Anti-bipolar Drugs

  • Shu Jia
  • Baoman Li
  • Jingyang Huang
  • Alexei Verkhratsky
  • Liang Peng
Original Paper


Here we present the data indicating that chronic treatment with three antibipolar drugs, lithium, carbamazepine and valproic acid regulates Cav-1/PTEN/PI3K/AKT/GSK-3β signalling pathway and glycogen content in primary cultured astrocytes. All three drugs down-regulate gene expression of Caveoline 1 (Cav-1), decrease membrane content of phosphatase and tensin homolog (PTEN), increase activity of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) and serine-threonine kinase (AKT), and elevate glycogen synthase kinase 3β (GSK-3β) phosphorylation thus suppressing its activity. As expected, treatment with any of these three drugs increases glycogen content in astrocytes. Our findings indicate that regulation of glycogen content via Cav-1/PTEN/AKT/GSK-3β pathway by the three anti-bipoar drugs may be responsible for therapeutic effects of these drugs, and Cav-1 is an important signal element that may contribute to pathogenesis of various CNS diseases and regulation of its gene expression may be one of the underlying mechanisms of drug action for antibipolar drugs and antidepressants currently in clinical use.


Biporlar disorder Cav-1 PTEN PI3K/AKT GSK-3β Glycogen 



This study was supported by Grant Nos. 201602834 from the Natural Science Foundation of Liaoning Province and [2015]1098 from the Scientific Research Foundation for Overseas Scholars of Education Ministry of China to BL.


  1. 1.
    Verkhratsky A, Nedergaard M (2014) Astroglial cradle in the life of the synapse. Philos Trans R Soc Lond Ser B 369(1654):20130595CrossRefGoogle Scholar
  2. 2.
    Verkhratsky A, Nedergaard M (2018) Physiology of astroglia. Physiol Rev 98(1):239–389CrossRefPubMedGoogle Scholar
  3. 3.
    Verkhratsky A, Zorec R, Parpura V (2017) Stratification of astrocytes in healthy and diseased brain. Brain Pathology 27(5):629–644CrossRefPubMedGoogle Scholar
  4. 4.
    Ferrer I (2017) Diversity of astroglial responses across human neurodegenerative disorders and brain aging. Brain Pathol 27(5):645–674CrossRefPubMedGoogle Scholar
  5. 5.
    Pekny M, Pekna M, Messing A, Steinhäuser C, Lee J-M, Parpura V, Hol EM, Sofroniew MV, Verkhratsky A (2016) Astrocytes: a central element in neurological diseases. Acta Neuropathol 131(3):323–345CrossRefPubMedGoogle Scholar
  6. 6.
    Öngür D, Drevets WC, Price JL (1998) Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc Natl Acad Sci USA 95(22):13290–13295CrossRefPubMedGoogle Scholar
  7. 7.
    Öngür D, Jensen JE, Prescot AP, Stork C, Lundy M, Cohen BM, Renshaw PF (2008) Abnormal glutamatergic neurotransmission and neuronal-glial interactions in acute mania. Biol Psychiatry 64(8):718–726CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Rajkowska G (2000) Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells. Biol Psychiat 48(8):766–777CrossRefPubMedGoogle Scholar
  9. 9.
    Peng L, Li B, Verkhratsky A (2016) Targeting astrocytes in bipolar disorder. Expert Rev Neurother 16(6):649–657CrossRefPubMedGoogle Scholar
  10. 10.
    Can A, Schulze TG, Gould TD (2014) Molecular actions and clinical pharmacogenetics of lithium therapy. Pharmacol Biochem Behav 123:3–16CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Gould TD, Manji HK (2005) Glycogen synthase kinase-3: a putative molecular target for lithium mimetic drugs. Neuropsychopharmacology 30:1223CrossRefPubMedGoogle Scholar
  12. 12.
    Perez-Costas E, Gandy JC, Melendez-Ferro M, Roberts RC, Bijur GN (2010) Light and electron microscopy study of glycogen synthase kinase-3β in the mouse brain. PLoS ONE 5(1):e8911CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Machado-Vieira R, Salvadore G, DiazGranados N, Ibrahim L, Latov D, Wheeler-Castillo C, Baumann J, Henter ID, Zarate CA (2010) New therapeutic targets for mood disorders. Sci World J 10:713–726CrossRefGoogle Scholar
  14. 14.
    Fang X, Yu SX, Lu Y, Bast RC, Woodgett JR, Mills GB (2000) Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proc Natl Acad Sci USA 97(22):11960–11965CrossRefPubMedGoogle Scholar
  15. 15.
    Ibrahim MZ (1975) Glycogen and its related enzymes of metabolism in the central nervous system. Adv Anat Embryol Cell Biol 52(1):3PubMedGoogle Scholar
  16. 16.
    Hertz L, Xu J, Song D, Du T, Li B, Yan E, Peng L (2015) Astrocytic glycogenolysis: mechanisms and functions. Metab Brain Dis 30(1):317–333CrossRefPubMedGoogle Scholar
  17. 17.
    Gibbs ME, Hutchinson DS (2012) Rapid turnover of glycogen in memory formation. Neurochem Res 37(11):2456–2463CrossRefPubMedGoogle Scholar
  18. 18.
    Hertz L, Xu J, Song D, Du T, Yan E, Peng L (2013) Brain glycogenolysis, adrenoceptors, pyruvate carboxylase, Na+,K+-ATPase and Marie E. Gibbs’ pioneering learning studies. Front Integr Neurosci 7:20CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Bai Q, Song D, Gu L, Verkhratsky A, Peng L (2017) Bi-phasic regulation of glycogen content in astrocytes via Cav-1/PTEN/PI3K/AKT/GSK-3β pathway by fluoxetine. Psychopharmacology 234(7):1069–1077CrossRefPubMedGoogle Scholar
  20. 20.
    Robbins HL, Hague A (2016) The PI3K/Akt pathway in tumors of endocrine tissues. Front Endocrinol 6:188CrossRefGoogle Scholar
  21. 21.
    Xia H, Khalil W, Kahm J, Jessurun J, Kleidon J, Henke CA (2010) Pathologic Caveolin-1 regulation of PTEN in idiopathic pulmonary fibrosis. Am J Pathol 176(6):2626–2637CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hertz L, Peng L, Lai JCK (1998) Functional studies in cultured astrocytes. Methods 16(3):293–310CrossRefPubMedGoogle Scholar
  23. 23.
    Hertz L, Juurlink B, Szuchet S (1985) Cell cultures. In: Lajtha A (ed) Handbook of neuro-chemistry, 8. Plenum Press, New York, pp 603–661Google Scholar
  24. 24.
    Meier E, Hertz L, Schousboe A (1991) Neurotransmitters as developmental signals. Neurochem Int 19(1):1–15CrossRefGoogle Scholar
  25. 25.
    Hertz L, Bender AS, Woodbury DM, White HS (1989) Potassium-stimulated calcium uptake in astrocytes and its potent inhibition by nimodipine. J Neurosci Res 22(2):209–215CrossRefPubMedGoogle Scholar
  26. 26.
    Peng L, Martín-Vasallo P, Sweadner JK (1997) Isoforms of Na,K-ATPase a and b subunits in the rat cerebellum and in granule cell cultures. J Neurosci 17(10):3488–3502CrossRefPubMedGoogle Scholar
  27. 27.
    Lowry O, Rosebrough N, Farr A, Randall R (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275PubMedGoogle Scholar
  28. 28.
    de Sousa RT, Zanetti MV, Talib LL, Serpa MH, Chaim TM, Carvalho AF, Brunoni AR, Busatto GF, Gattaz WF, Machado-Vieira R (2015) Lithium increases platelet serine-9 phosphorylated GSK-3β levels in drug-free bipolar disorder during depressive episodes. J Psychiatr Res 62(Supplement C):78–83CrossRefPubMedGoogle Scholar
  29. 29.
    Li X, Liu M, Cai Z, Wang G, Li X (2010) Regulation of glycogen synthase kinase-3 during bipolar mania treatment. Bipolar Disord 12(7):741–752CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Li X, Bijur GN, Jope RS (2002) Glycogen synthase kinase-3β, mood stabilizers, and neuroprotection. Bipolar Disord 4(2):137–144CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Birch NJ (1974) Lithium and magnesium-dependent enzymes. Lancet 304(7886):965–966CrossRefGoogle Scholar
  32. 32.
    Beaulieu JM, Marion S, Rodriguiz RM, Medvedev IO, Sotnikova TD, Ghisi V, Wetsel WC, Lefkowitz RJ, Gainetdinov RR, Caron MG (2008) A beta-arrestin 2 signaling complex mediates lithium action on behavior. Cell 132(1):125CrossRefPubMedGoogle Scholar
  33. 33.
    Freland L, Beaulieu J-M (2012) Inhibition of GSK3 by lithium, from single molecules to signaling networks. Front Mol Neurosci 5:14CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Pan JQ, Lewis MC, Ketterman JK, Clore EL, Riley M, Richards KR, Berry-Scott E, Liu X, Wagner FF, Holson EB, Neve RL, Biechele TL, Moon RT, Scolnick EM, Petryshen TL, Haggarty SJ (2011) AKT kinase activity is required for lithium to modulate mood-related behaviors in mice. Neuropsychopharmacology 36(7):1397–1411CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    De Sarno P, Li X, Jope RS (2002) Regulation of Akt and glycogen synthase kinase-3β phosphorylation by sodium valproate and lithium. Neuropharmacology 43(7):1158–1164CrossRefPubMedGoogle Scholar
  36. 36.
    Li Z, Wu F, Zhang X, Chai Y, Chen D, Yang Y, Xu K, Yin J, Li R, Shi H, Wang Z, Li X, Xiao J, Zhang H (2017) Valproate attenuates endoplasmic reticulum stress-induced apoptosis in SH-SY5Y cells via the AKT/GSK3β signaling pathway. Int J Mol Sci 18(2):315CrossRefPubMedCentralGoogle Scholar
  37. 37.
    Huang S, Zhu M, Wu W, Rashid A, Liang Y, Hou L, Ning Q, Luo X (2014) Valproate pretreatment protects pancreatic β-cells from palmitate-induced ER stress and apoptosis by inhibiting glycogen synthase kinase-3β. J Biomed Sci 21(1):38–38CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Aubry J-M, Schwald M, Ballmann E, Karege F (2009) Early effects of mood stabilizers on the Akt/GSK-3β signaling pathway and on cell survival and proliferation. Psychopharmacology 205(3):419–429CrossRefPubMedGoogle Scholar
  39. 39.
    Li B, Jia S, Yue T, Yang L, Huang C, Verkhratsky A, Peng L (2017) Biphasic regulation of Caveolin-1 gene expression by fluoxetine in astrocytes: opposite effects of PI3K/AKT and MAPK/ERK signaling pathways on c-fos. Front Cell Neurosci 11:335CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Zhao Y, Zhang Q, Shao X, Ouyang L, Wang X, Zhu K, Chen L (2017) Decreased glycogen content might contribute to chronic stress-induced atrophy of hippocampal astrocyte volume and depression-like behavior in rats. Sci Rep 7:43192CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Duran J, Saez I, Gruart A, Guinovart JJ, Delgado-García JM (2013) Impairment in long-term memory formation and learning-dependent synaptic plasticity in mice lacking glycogen synthase in the brain. J Cereb Blood Flow Metab 33(4):550–556CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    O’Dowd BS, Gibbs ME, Ng KT, Hertz E, Hertz L (1994) Astrocytic glycogenolysis energizes memory processes in neonate chicks. Dev Brain Res 78(1):137–141CrossRefGoogle Scholar
  43. 43.
    Gibbs ME, Hertz L (2014) Serotonin mediation of early memory formation via 5-HT(2B) receptor-induced glycogenolysis in the day-old chick. Front Pharmacol 5:54CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Suzuki A, Stern Sarah A, Bozdagi O, Huntley George W, Walker Ruth H, Magistretti Pierre J, Alberini Cristina M (2011) Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144(5):810–823CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Gao V, Suzuki A, Magistretti PJ, Lengacher S, Pollonini G, Steinman MQ, Alberini CM (2016) Astrocytic β(2)-adrenergic receptors mediate hippocampal long-term memory consolidation. Proc Natl Acad Sci USA 113(30):8526–8531CrossRefPubMedGoogle Scholar
  46. 46.
    O’Dowd BS, Barrington J, Ng KT, Hertz E, Hertz L (1995) Glycogenolytic response of primary chick and mouse cultures of astrocytes to noradrenaline across development. Dev Brain Res 88(2):220–223CrossRefGoogle Scholar
  47. 47.
    Wang W, Gu L, Verkhratsky A, Peng L (2017) Ammonium increases TRPC1 expression via Cav-1/PTEN/AKT/GSK3β pathway. Neurochem Res 42(3):762–776CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratory of Metabolic Brain Diseases, Institute of Metabolic Disease Research and Drug DevelopmentChina Medical UniversityShenyangPeople’s Republic of China
  2. 2.Department of Laboratory Medicine & Pathology in the Faculty of Medicine and DentistryUniversity of AlbertaEdmontonCanada
  3. 3.Faculty of Life ScienceThe University of ManchesterManchesterUK
  4. 4.Achucarro Center for NeuroscienceIKERBASQUE, Basque Foundation for ScienceBilbaoSpain

Personalised recommendations