Advertisement

Neurochemical Research

, Volume 43, Issue 8, pp 1511–1518 | Cite as

Systemic Injections of Cannabidiol Enhance Acetylcholine Levels from Basal Forebrain in Rats

  • Eric Murillo-RodríguezEmail author
  • Gloria Arankowsky-Sandoval
  • Nuno Barbosa Rocha
  • Rodrigo Peniche-Amante
  • André Barciela Veras
  • Sérgio Machado
  • Henning Budde
Original Paper

Abstract

Cannabis sativa is a plant that contains more than 500 components, of which the most studied are Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD). Several studies have indicated that CBD displays neurobiological effects, including wake promotion. Moreover, experimental evidence has shown that injections of CBD enhance wake-related compounds, such as monoamines (dopamine, serotonin, epinephrine, and norepinephrine). However, no clear evidence is available regarding the effects of CBD on additional wake-related neurochemicals such as acetylcholine (ACh). Here, we demonstrate that systemic injections of CBD (0, 5, 10 or 30 mg/kg, i.p.) at the beginning of the lights-on period, increase the extracellular levels of ACh collected from the basal forebrain and measured by microdialysis and HPLC means. Moreover, the time course effects on the contents of ACh were present 5 h post-injection of CBD. Altogether, these data demonstrate that CBD increases ACh levels in a brain region related to wake control. This study is the first to show the effects of ACh levels in CBD-treated rats and suggests that the basal forebrain might be a site of action of CBD for wakefulness modulation.

Keywords

Cannabis Dopamine Monoamines Sleep Wakefulness 

Abbreviations

ACh

Acetylcholine

CBD

Cannabidiol

HPLC

High performance liquid chromatography

R2

Linear regression analysis

Δ9-THC

Δ9-Tetrahydrocannabinol

Notes

Acknowledgements

This work was supported by The University of California Institute for Mexico and the United States (UC MEXUS) and Consejo Nacional de Ciencia y Tecnología (CONACyT; Grant: CN-17-19) and Escuela de Medicina, Universidad Anáhuac Mayab (Grant: PresInvEMR2017) given to E.M-R.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Mechoulam R, Shani A, Edery H, Grunfeld Y (1970) Chemical basis of hashish activity. Science 169:611–612CrossRefPubMedGoogle Scholar
  2. 2.
    Schafroth MA, Carreira EM (2017) Synthesis of Phytocannabinoids. Prog Chem Org Nat Prod 103:37–59CrossRefPubMedGoogle Scholar
  3. 3.
    Turner SE, Williams CM, Iversen L, Whalley BJ (2017) Molecular pharmacology of phytocannabinoids. Prog Chem Org Nat Prod 103:61–101CrossRefPubMedGoogle Scholar
  4. 4.
    Shoval G, Shbiro L, Hershkovitz L, Hazut N, Zalsman G, Mechoulam R, Weller A (2016) Prohedonic effect of cannabidiol in a rat model of depression. Neuropsychobiol 73:123–129CrossRefGoogle Scholar
  5. 5.
    Campos AC, Fogaça MV, Scarante FF, Joca SRL, Sales AJ, Gomes FV, Sonego AB, Rodrigues NS, Galve-Roperh I, Guimarães FS (2017) Plastic and neuroprotective mechanisms involved in the therapeutic effects of cannabidiol in psychiatric disorders. Front Pharmacol 8:269CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Hudson R, Rushlow W, Laviolette SR (2017) Phytocannabinoids modulate emotional memory processing through interactions with the ventral hippocampus and mesolimbic dopamine system: implications for neuropsychiatric pathology. Psychopharmacology 235(2):447–458CrossRefPubMedGoogle Scholar
  7. 7.
    Koubeissi M (2017) Anticonvulsant effects of cannabidiol in Dravet syndrome. Epilepsy Curr 17:281–282CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    McGuire P, Robson P, Cubala WJ, Vasile D, Morrison PD, Barron R, Taylor A, Wright S (2017) Cannabidiol (CBD) as an adjunctive therapy in schizophrenia: a multicenter randomized controlled trial. Am J Psychiatry 175(3):225–231CrossRefPubMedGoogle Scholar
  9. 9.
    Osborne AL, Solowij N, Weston-Green K (2017) A systematic review of the effect of cannabidiol on cognitive function: relevance to schizophrenia. Neurosci Biobehav Rev 72:310–324CrossRefPubMedGoogle Scholar
  10. 10.
    Russo EB (2017) Cannabidiol claims and misconceptions. Trends Pharmacol Sci 38:198–201CrossRefPubMedGoogle Scholar
  11. 11.
    Pertwee RG (2008) The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: Delta9-tetrahydrocannabinol, cannabidiol and delta9-tetrahydrocannabivarin. Br J Pharmacol 153:199–215CrossRefPubMedGoogle Scholar
  12. 12.
    Mishima K, Hayakawa K, Abe K, Ikeda T, Egashira N, Iwasaki K, Fujiwara M (2005) Cannabidiol prevents cerebral infarction via a serotonergic 5-hydroxytryptamine1A receptor-dependent mechanism. Stroke 36:1077–1082CrossRefPubMedGoogle Scholar
  13. 13.
    Bisogno T, Hanus L, De Petrocellis L, Tchilibon S, Ponde DE, Brandi I, Moriello AS, Davis JB, Mechoulam R, Di Marzo V (2001) Molecular targets for cannabidiol and its synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and enzymatic hydrolysis of anandamide. Br J Pharmacol 134:845–852CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Carrier EJ, Auchampach JA, Hillard CJ (2006) Inhibition of an equilibrative nucleoside transporter by cannabidiol: a mechanism of cannabinoid immunosuppression. Proc Natl Acad Sci USA 103:7895–7900CrossRefPubMedGoogle Scholar
  15. 15.
    Mechoulam R, Peters M, Murillo-Rodriguez E, Hanus LO (2007) Cannabidiol—recent advances. Chem Biodivers 4:1678–1692CrossRefPubMedGoogle Scholar
  16. 16.
    Norris C, Loureiro M, Kramar C, Zunder J, Renard J, Rushlow W, Laviolette SR (2016) Cannabidiol Modulates Fear Memory Formation Through Interactions with Serotonergic Transmission in the Mesolimbic System. Neuropsychopharmacology 41:2839–2850CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lee JLC, Bertoglio LJ, Guimarães FS, Stevenson CW (2017) Cannabidiol regulation of emotion and emotional memory processing: relevance for treating anxiety-related and substance abuse disorders. Br J Pharmacol 174:3242–3256CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hammell DC, Zhang LP, Ma F, Abshire SM, McIlwrath SL, Stinchcomb AL, Westlund KN (2016) Transdermal cannabidiol reduces inflammation and pain-related behaviours in a rat model of arthritis. Eur J Pain 20:936–948CrossRefPubMedGoogle Scholar
  19. 19.
    Philpott HT, OʼBrien M, McDougall JJ (2017) Attenuation of early phase inflammation by cannabidiol prevents pain and nerve damage in rat osteoarthritis. Pain 158:2442–2451CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Murillo-Rodríguez E, Millán-Aldaco D, Palomero-Rivero M, Mechoulam R, Drucker-Colín R (2006) Cannabidiol, a constituent of Cannabis sativa, modulates sleep in rats. FEBS Lett 580:4337–4345CrossRefPubMedGoogle Scholar
  21. 21.
    Murillo-Rodríguez E, Millán-Aldaco D, Palomero-Rivero M, Mechoulam R, Drucker-Colín R (2008) The nonpsychoactive Cannabis constituent cannabidiol is a wake-inducing agent. Behav Neurosci 122:1378–1382CrossRefPubMedGoogle Scholar
  22. 22.
    Murillo-Rodríguez E, Sarro-Ramírez A, Sánchez D, Mijangos-Moreno S, Tejeda-Padrón A, Poot-Aké A, Guzmán K, Pacheco-Pantoja E, Arias-Carrión O (2014) Potential effects of cannabidiol as a wake-promoting agent. Curr Neuropharmacol 12:269–272CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Babson KA, Sottile J, Morabito D (2017) Cannabis, cannabinoids, and sleep: a review of the literature. Curr Psychiatry Rep 19:23CrossRefPubMedGoogle Scholar
  24. 24.
    Mijangos-Moreno S, Poot-Aké A, Arankowsky-Sandoval G, Murillo-Rodríguez E (2014) Intrahypothalamic injection of cannabidiol increases the extracellular levels of adenosine in nucleus accumbens in rats. Neurosci Res 84:60–63CrossRefPubMedGoogle Scholar
  25. 25.
    Murillo-Rodríguez E, Palomero-Rivero M, Millán-Aldaco D, Mechoulam R, Drucker-Colín R (2011) Effects on sleep and dopamine levels of microdialysis perfusion of cannabidiol into the lateral hypothalamus of rats. Life Sci 88:504–511CrossRefPubMedGoogle Scholar
  26. 26.
    Murillo-Rodríguez E, Di Marzo V, Machado S, Rocha NB, Veras AB, Neto GAM, Budde H, Arias-Carrión O, Arankowsky-Sandoval G (2017) Role of N-arachidonoyl-serotonin (AA-5-HT) in sleep–wake cycle architecture, sleep homeostasis, and neurotransmitters regulation. Front Mol Neurosci 10:152CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Revuelta AV, Moroni F, Cheney DL, Costa E (1978) Effect of cannabinoids on the turnover rate of acetylcholine in rat hippocampus, striatum and cortex. Naunyn Schmiedebergs Arch Pharmacol 304:107–110CrossRefPubMedGoogle Scholar
  28. 28.
    Tripathi HL, Vocci FJ, Brase DA, Dewey WL (1987) Effects of cannabinoids on levels of acetylcholine and choline and on turnover rate of acetylcholine in various regions of the mouse brain. Alcohol Drug Res 7:525–532PubMedGoogle Scholar
  29. 29.
    Mulè F, Amato A, Baldassano S, Serio R (2007) Involvement of CB1 and CB2 receptors in the modulation of cholinergic neurotransmission in mouse gastric preparations. Pharmacol Res 56:185–192CrossRefPubMedGoogle Scholar
  30. 30.
    Yamakawa GR, Basu P, Cortese F, MacDonnell J, Whalley D, Smith VM, Antle MC (2016) The cholinergic forebrain arousal system acts directly on the circadian pacemaker. Proc Natl Acad Sci USA 113:13498–13503CrossRefPubMedGoogle Scholar
  31. 31.
    Bringmann H (2018) sleep–active neurons: conserved motors of sleep. Genetics 208:1279–1289CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Blake MG, Boccia MM (2018) Basal forebrain cholinergic system and memory. Curr Top Behav Neurosci 37:253–273CrossRefPubMedGoogle Scholar
  33. 33.
    Paxinos G, Watson C (2005) The rat brain in stereotaxic coordinates. Academic Press, San DiegoGoogle Scholar
  34. 34.
    Murillo-Rodriguez E, Blanco-Centurion C, Gerashchenko D, Salin-Pascual RJ, Shiromani PJ (2004) The diurnal rhythm of adenosine levels in the basal forebrain of young and old rats. Neurosci 123:361–370CrossRefGoogle Scholar
  35. 35.
    Renard J, Norris C, Rushlow W, Laviolette SR (2017) Neuronal and molecular effects of cannabidiol on the mesolimbic dopamine system: implications for novel schizophrenia treatments. Neurosci Biobehav Rev 75:157–165CrossRefPubMedGoogle Scholar
  36. 36.
    Rossignoli MT, Lopes-Aguiar C, Ruggiero RN, da Silva RADV, Bueno-Junior LS, Kandratavicius L, Peixoto-Santos JE, Crippa JA, Cecilio Hallak JE, Zuardi AW, Szawka RE, Anselmo-Franci J, Leite JP, Romcy-Pereira RN (2017) Selective post-training time window for memory consolidation interference of cannabidiol into the prefrontal cortex: reduced dopaminergic modulation and immediate gene expression in limbic circuits. Neurosci 350:85–93CrossRefGoogle Scholar
  37. 37.
    Pych JC, Chang Q, Colon-Rivera C, Haag R, Gold PE (2005) Acetylcholine release in the hippocampus and striatum during place and response training. Learn Mem 12:564–572CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hatip-Al-Khatib I, Iwasaki K, Yoshimitsu Y, Arai T, Egashira N, Mishima K, Ikeda T, Fujiwara M (2005) Effect of oral administration of zanapezil (TAK-147) for 21 days on acetylcholine and monoamines levels in the ventral hippocampus of freely moving rats. Br J Pharmacol 145:1035–1044CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Roland JJ, Savage LM (2009) Blocking GABA-A receptors in the medial septum enhances hippocampal acetylcholine release and behavior in a rat model of diencephalic amnesia. Pharmacol Biochem Behav 92:480–487CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Grupe M, Paolone G, Jensen AA, Sandager-Nielsen K, Sarter M, Grunnet M (2013) Selective potentiation of (α4)3(β2)2 nicotinic acetylcholine receptors augments amplitudes of prefrontal acetylcholine- and nicotine-evoked glutamatergic transients in rats. Biochem Pharmacol 86:1487–1496CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Guinguis R, Ruiz MI, Rada G (2017) Is cannabidiol an effective treatment for schizophrenia? Medwave 17:e7010CrossRefPubMedGoogle Scholar
  42. 42.
    Keating GM (2017) Delta-9-tetrahydrocannabinol/cannabidiol oromucosal spray (Sativex®): a review in multiple sclerosis-related spasticity. Drugs 77: 563–574.CrossRefPubMedGoogle Scholar
  43. 43.
    Rong C, Lee Y, Carmona NE, Cha DS, Ragguett RM, Rosenblat JD, Mansur RB, Ho RC, McIntyre RS (2017) Cannabidiol in medical marijuana: research vistas and potential opportunities. Pharmacol Res 121:213–218CrossRefPubMedGoogle Scholar
  44. 44.
    Zant JC, Kim T, Prokai L, Szarka S, McNally J, McKenna JT, Shukla C, Yang C, Kalinchuk AV, McCarley RW, Brown RE, Basheer R (2016) Cholinergic neurons in the basal forebrain promote wakefulness by actions on neighboring non-cholinergic neurons: an opto-dialysis study. J Neurosci 36:2057–2067CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Sharma R, Sahota P, Thakkar MM (2017) Lesion of the basal forebrain cholinergic neurons attenuates sleepiness and adenosine after alcohol consumption. J Neurochem 142:710–720CrossRefPubMedGoogle Scholar
  46. 46.
    McPartland JM, Duncan M, Di Marzo V, Pertwee RG (2015) Are cannabidiol and ∆(9)-tetrahydrocannabivarin negative modulators of the endocannabinoid system? A systematic review. Br J Pharmacol 172:737–753CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Laprairie RB, Bagher AM, Kelly ME, Denovan-Wright EM (2015) Cannabidiol is a negative allosteric modulator of the cannabinoid CB1 receptor. Br J Pharmacol 172:4790–4805CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Tsou K, Brown S, Sañudo-Peña MC, Mackie K, Walker JM (1998) Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neurosci 83:393–411CrossRefGoogle Scholar
  49. 49.
    Lu XR, Ong WY, Mackie K (1999) A light and electron microscopic study of the CB1 cannabinoid receptor in monkey basal forebrain. J Neurocytol 28:1045–1051CrossRefPubMedGoogle Scholar
  50. 50.
    Hinds NM, Ullrich K, Smid SD (2006) Cannabinoid 1 (CB1) receptors coupled to cholinergic motorneurones inhibit neurogenic circular muscle contractility in the human colon. Br J Pharmacol 148:191–199CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Soni N, Satpathy S, Kohlmeier KA (2014) Neurophysiological evidence for the presence of cannabinoid CB1 receptors in the laterodorsal tegmental nucleus. Eur J Neurosci 40:3635–3652CrossRefPubMedGoogle Scholar
  52. 52.
    Santucci V, Storme JJ, Soubrié P, Le Fur G (1996) Arousal-enhancing properties of the CB1 cannabinoid receptor antagonist SR 141716A in rats as assessed by electroencephalographic spectral and sleep–waking cycle analysis. Life Sci 58:PL103–PL110CrossRefPubMedGoogle Scholar
  53. 53.
    Murillo-Rodríguez E, Machado S, Rocha NB, Budde H, Yuan TF, Arias-Carrión O (2016) Revealing the role of the endocannabinoid system modulators, SR141716A, URB597 and VDM-11, in sleep homeostasis. Neuroscience 339:433–449CrossRefPubMedGoogle Scholar
  54. 54.
    Jenny M, Schröcksnadel S, Überall F, Fuchs D (2010) The potential role of cannabinoids in modulating serotonergic signaling by their influence on tryptophan metabolism. Pharmaceuticals 3:2647–2660CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Bih CI, Chen T, Nunn AV, Bazelot M, Dallas M, Whalley BJ (2015) Molecular targets of cannabidiol in neurological disorders. Neurotherapeutics 12:699–730CrossRefGoogle Scholar
  56. 56.
    Mahgoub M, Keun-Hang SY, Sydorenko V, Ashoor A, Kabbani N, Al Kury L, Sadek B, Howarth CF, Isaev D, Galadari S, Oz M (2013) Effects of cannabidiol on the function of α7-nicotinic acetylcholine receptors. Eur J Pharmacol 720:310–319CrossRefPubMedGoogle Scholar
  57. 57.
    Papouin T, Dunphy JM, Tolman M, Dineley KT, Haydon PG (2017) Septal cholinergic neuromodulation tunes the astrocyte-dependent gating of hippocampal NMDA receptors to wakefulness. Neuron 94:840–854CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Porkka-Heiskanen T, Kalinchuk AV (2011) Adenosine, energy metabolism and sleep homeostasis. Sleep Med Rev 15:123–135CrossRefPubMedGoogle Scholar
  59. 59.
    Huang ZL, Zhang Z, Qu WM (2014) Roles of adenosine and its receptors in sleep–wake regulation. Int Rev Neurobiol 119:349–371CrossRefPubMedGoogle Scholar
  60. 60.
    Mecha M, Feliú A, Iñigo PM, Mestre L, Carrillo-Salinas FJ, Guaza C (2013) Cannabidiol provides long-lasting protection against the deleterious effects of inflammation in a viral model of multiple sclerosis: a role for A2A receptors. Neurobiol Dis 59:141–150CrossRefPubMedGoogle Scholar
  61. 61.
    Gonca E, Darıcı F (2015) The effect of cannabidiol on ischemia/reperfusion-induced ventricular arrhythmias: the role of adenosine A1 receptors. J Cardiovasc Pharmacol Ther 20:76–83CrossRefPubMedGoogle Scholar
  62. 62.
    Greene RW, Bjorness TE, Suzuki A (2017) The adenosine-mediated, neuronal-glial, homeostatic sleep response. Curr Opin Neurobiol 44:236–242CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Ribeiro A, Ferraz-de-Paula V, Pinheiro ML, Vitoretti LB, Mariano-Souza DP, Quinteiro-Filho WM, Akamine AT, Almeida VI, Quevedo J, Dal-Pizzol F, Hallak JE, Zuardi AW, Crippa JA, Palermo-Neto J (2012) Cannabidiol, a non-psychotropic plant-derived cannabinoid, decreases inflammation in a murine model of acute lung injury: role for the adenosine A(2A) receptor. Eur J Pharmacol 678:78–85CrossRefPubMedGoogle Scholar
  64. 64.
    Morales P, Reggio PH, Jagerovic N (2017) An overview on medicinal chemistry of synthetic and natural derivatives of cannabidiol. Front Pharmacol 8:422CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Yang AC, Tsai SJ (2017) New targets for schizophrenia treatment beyond the dopamine hypothesis. Int J Mol Sci 18:E1689CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Eric Murillo-Rodríguez
    • 1
    • 2
    Email author
  • Gloria Arankowsky-Sandoval
    • 3
  • Nuno Barbosa Rocha
    • 2
    • 4
  • Rodrigo Peniche-Amante
    • 5
  • André Barciela Veras
    • 2
    • 6
  • Sérgio Machado
    • 2
    • 7
    • 8
    • 9
  • Henning Budde
    • 2
    • 10
    • 11
    • 12
  1. 1.Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la SaludUniversidad Anáhuac MayabMéridaMexico
  2. 2.Intercontinental Neuroscience Research GroupMéridaMexico
  3. 3.Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”Universidad Autónoma de YucatánMéridaMexico
  4. 4.Health SchoolPolytechnic Institute of PortoPortoPortugal
  5. 5.Coordinación de Psicología Organizacional, División de Estudios Profesionales, Facultad de PsicologíaUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  6. 6.Universidade Catolica Dom BoscoCampo GrandeBrazil
  7. 7.Laboratory of Panic and Respiration, Institute of PsychiatryFederal University of Rio de JaneiroRio de JaneiroBrazil
  8. 8.Salgado de Oliveira UniversityRio de JaneiroBrazil
  9. 9.Physical Activity Neuroscience LaboratoryPhysical Activity Sciences Postgraduate Program-Salgado de Oliveira University (UNIVERSO)Rio de JaneiroBrazil
  10. 10.Faculty of Human SciencesMedical School HamburgHamburgGermany
  11. 11.Physical Activity, Physical Education, Health and Sport Research Centre (PAPESH), Sports Science Department, School of Science and EngineeringReykjavik UniversityReykjavíkIceland
  12. 12.Lithuanian Sports UniversityKaunasLithuania

Personalised recommendations