Neurochemical Research

, Volume 43, Issue 7, pp 1464–1475 | Cite as

Increased Superoxide Dismutase 2 by Allopregnanolone Ameliorates ROS-Mediated Neuronal Death in Mice with Pilocarpine-Induced Status Epilepticus

  • Inja Cho
  • Won-Joo Kim
  • Hyun-Woo Kim
  • Kyoung Heo
  • Byung In Lee
  • Yang-Je ChoEmail author
Original Paper


Excessive production of reactive oxygen species (ROS), along with dysfunction of the antioxidant defense system, such as that involving superoxide dismutase (SOD), may play a major role in neuronal death following status epilepticus (SE). Neurosteroids, which are allosteric modulators of the GABAA receptor in cerebral metabolism, have been suggested as being neuroprotective in various animal models; however, their effect to preventing ROS has not been examined. Herein, we investigate the neuroprotective role of allopregnanolone, the prototypical neurosteroid in the brain, in relation to the ROS-mediated neuronal injury. Adult male C57BL/6 mice were subjected to SE and treated with allopregnanolone. Hippocampal cell death was assessed by the terminal deoxynucleotidyl transferase dUTP nick end labeling assay, and ROS production was investigated by in situ detection of oxidized hydroethidine. SOD2 expression was analyzed by both western blot and immunofluorescent staining in the hippocampal subfields. In mice treated with allopregnanolone after SE, hippocampal cell death, DNA fragmentation, oxidative DNA damage, and ROS production were reduced significantly compared to mice subjected to vehicle treatment after SE. Hippocampal SOD2 expression was significantly increased by allopregnanolone. These finding suggest that allopregnanolone plays a neuroprotective role, with not only anticonvulsant but also antioxidant effects, by increasing SOD2 in pilocarpine-induced SE model.


Status epilepticus Oxidative stress Superoxide dismutase Hippocampus Allopregnanolone 



This study was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (NRF-2015R1D1A1A01059901).

Supplementary material

11064_2018_2561_MOESM1_ESM.docx (150 kb)
Supplementary material 1 (DOCX 150 KB)


  1. 1.
    Fisher RS, van Emde Boas W, Blume W, Elger C, Genton P, Lee P, Engel J Jr (2005) Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46:470–472CrossRefPubMedGoogle Scholar
  2. 2.
    Fountain NB (2000) Status epilepticus: risk factors and complications. Epilepsia 41(Suppl 2):S23-30PubMedGoogle Scholar
  3. 3.
    Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5:9–19CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399CrossRefPubMedGoogle Scholar
  5. 5.
    Zelko IN, Mariani TJ, Folz RJ (2002) Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution, and expression. Free Radic Biol Medicine 33:337–349CrossRefGoogle Scholar
  6. 6.
    Liu J, Wang A, Li L, Huang Y, Xue P, Hao A (2010) Oxidative stress mediates hippocampal neuron death in rats after lithium-pilocarpine-induced status epilepticus. Seizure 19:165–172CrossRefPubMedGoogle Scholar
  7. 7.
    Patel M, Day BJ, Crapo JD, Fridovich I, McNamara JO (1996) Requirement for superoxide in excitotoxic cell death. Neuron 16:345–355CrossRefPubMedGoogle Scholar
  8. 8.
    Baulieu EE, Robel P (1990) Neurosteroids: a new brain function? J Steroid Biochem Mol Biol 37:395–403CrossRefPubMedGoogle Scholar
  9. 9.
    Reddy DS (2010) Neurosteroids: endogenous role in the human brain and therapeutic potentials. Prog Brain Res 186:113–137CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lambert JJ, Belelli D, Peden DR, Vardy AW, Peters JA (2003) Neurosteroid modulation of GABAA receptors. Prog Neurobiol 71:67–80CrossRefPubMedGoogle Scholar
  11. 11.
    Belelli D, Lambert JJ (2005) Neurosteroids: endogenous regulators of the GABA(A) receptor. Nat Rev Neurosci 6:565–575CrossRefPubMedGoogle Scholar
  12. 12.
    Lambert JJ, Cooper MA, Simmons RD, Weir CJ, Belelli D (2009) Neurosteroids: endogenous allosteric modulators of GABA(A) receptors. Psychoneuroendocrinology 34(Suppl 1):S48-58PubMedGoogle Scholar
  13. 13.
    Kokate TG, Cohen AL, Karp E, Rogawski MA (1996) Neuroactive steroids protect against pilocarpine- and kainic acid-induced limbic seizures and status epilepticus in mice. Neuropharmacology 35:1049–1056CrossRefPubMedGoogle Scholar
  14. 14.
    Reddy DS, Rogawski MA (2001) Enhanced anticonvulsant activity of neuroactive steroids in a rat model of catamenial epilepsy. Epilepsia 42:337–344CrossRefPubMedGoogle Scholar
  15. 15.
    Reddy DS, Castaneda DC, O’Malley BW, Rogawski MA (2004) Anticonvulsant activity of progesterone and neurosteroids in progesterone receptor knockout mice. J Pharmacol Exp Ther 310:230–239CrossRefPubMedGoogle Scholar
  16. 16.
    Klitgaard H, Matagne A, Vanneste-Goemaere J, Margineanu DG (2002) Pilocarpine-induced epileptogenesis in the rat: impact of initial duration of status epilepticus on electrophysiological and neuropathological alterations. Epilepsy Res 51:93–107CrossRefPubMedGoogle Scholar
  17. 17.
    Newton IG, Forbes ME, Legault C, Johnson JE, Brunso-Bechtold JK, Riddle DR (2005) Caloric restriction does not reverse aging-related changes in hippocampal BDNF. Neurobiol Aging 26:683–688CrossRefPubMedGoogle Scholar
  18. 18.
    Ma Y, Hof PR, Grant SC, Blackband SJ, Bennett R, Slatest L, McGuigan MD, Benveniste H (2005) A three-dimensional digital atlas database of the adult C57BL/6J mouse brain by magnetic resonance microscopy. Neuroscience 135:1203–1215CrossRefPubMedGoogle Scholar
  19. 19.
    Wang H, Gondre-Lewis MC (2013) Prenatal Nicotine and Maternal Deprivation Stress De-Regulate the Development of CA1, CA3, and Dentate Gyrus Neurons in Hippocampus of Infant Rats. PLoS One 8:e65517CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Freitas RM, Vasconcelos SM, Souza FC, Viana GS, Fonteles MM (2005) Oxidative stress in the hippocampus after pilocarpine-induced status epilepticus in Wistar rats. FEBS J 272:1307–1312CrossRefPubMedGoogle Scholar
  21. 21.
    Tan Z, Sankar R, Tu W, Shin D, Liu H, Wasterlain CG, Schreiber SS (2002) Immunohistochemical study of p53-associated proteins in rat brain following lithium-pilocarpine status epilepticus. Brain Res 929:129–138CrossRefPubMedGoogle Scholar
  22. 22.
    Devi PU, Manocha A, Vohora D (2008) Seizures, antiepileptics, antioxidants and oxidative stress: an insight for researchers. Expert Opin Pharmacother 9:3169–3177CrossRefPubMedGoogle Scholar
  23. 23.
    Ray SD, Lam TS, Rotollo JA, Phadke S, Patel C, Dontabhaktuni A, Mohammad S, Lee H, Strika S, Dobrogowska A, Bruculeri C, Chou A, Patel S, Patel R, Manolas T, Stohs S (2004) Oxidative stress is the master operator of drug and chemically-induced programmed and unprogrammed cell death: Implications of natural antioxidants in vivo. BioFactors 21:223–232CrossRefPubMedGoogle Scholar
  24. 24.
    Cho I, Cho YJ, Kim HW, Heo K, Lee BI, Kim WJ (2014) Effect of Androsterone after Pilocarpine-induced Status Epilepticus in Mice. J Epilepsy Res 4:7–13CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Meencke HJ (2009) Clinical neuropathology of the epilepsies in the 100 years of the ILAE (1909–2009). Epilepsia 50(Suppl 3):8–16CrossRefPubMedGoogle Scholar
  26. 26.
    Wang X, Michaelis EK (2010) Selective neuronal vulnerability to oxidative stress in the brain. Front Aging Neurosci 2:12PubMedPubMedCentralGoogle Scholar
  27. 27.
    Bartsch T (2012) The clinical neurobiology of the hippocampus: an integrative view. Oxford University Press, OxfordCrossRefGoogle Scholar
  28. 28.
    Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695CrossRefPubMedGoogle Scholar
  29. 29.
    Liang LP, Ho YS, Patel M (2000) Mitochondrial superoxide production in kainate-induced hippocampal damage. Neuroscience 101:563–570CrossRefPubMedGoogle Scholar
  30. 30.
    Kinouchi H, Epstein CJ, Mizui T, Carlson E, Chen SF, Chan PH (1991) Attenuation of focal cerebral ischemic injury in transgenic mice overexpressing CuZn superoxide dismutase. Proc Natl Acad Sci USA 88:11158–11162CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Chan PH, Kawase M, Murakami K, Chen SF, Li Y, Calagui B, Reola L, Carlson E, Epstein CJ (1998) Overexpression of SOD1 in transgenic rats protects vulnerable neurons against ischemic damage after global cerebral ischemia and reperfusion. J Neurosci 18:8292–8299CrossRefPubMedGoogle Scholar
  32. 32.
    Tao R, Coleman MC, Pennington JD, Ozden O, Park SH, Jiang H, Kim HS, Flynn CR, Hill S, Hayes McDonald W, Olivier AK, Spitz DR, Gius D (2010) Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol Cell 40:893–904CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Qiu X, Brown K, Hirschey MD, Verdin E, Chen D (2010) Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab 12:662–667CrossRefPubMedGoogle Scholar
  34. 34.
    Jesko H, Wencel P, Strosznajder RP, Strosznajder JB (2017) Sirtuins and their roles in brain aging and neurodegenerative disorders. Neurochem Res 42:876–890CrossRefPubMedGoogle Scholar
  35. 35.
    Harrison NL, Simmonds MA (1984) Modulation of the GABA receptor complex by a steroid anaesthetic. Brain Res 323:287–292CrossRefPubMedGoogle Scholar
  36. 36.
    Majewska MD, Harrison NL, Schwartz RD, Barker JL, Paul SM (1986) Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science 232:1004–1007CrossRefPubMedGoogle Scholar
  37. 37.
    Hosie AM, Wilkins ME, Smart TG (2007) Neurosteroid binding sites on GABA(A) receptors. Pharmacol Ther 116:7–19CrossRefPubMedGoogle Scholar
  38. 38.
    Stoffel-Wagner B, Watzka M, Steckelbroeck S, Ludwig M, Clusmann H, Bidlingmaier F, Casarosa E, Luisi S, Elger CE, Beyenburg S (2003) Allopregnanolone serum levels and expression of 5 alpha-reductase and 3 alpha-hydroxysteroid dehydrogenase isoforms in hippocampal and temporal cortex of patients with epilepsy. Epilepsy Res 54:11–19CrossRefPubMedGoogle Scholar
  39. 39.
    Herzog AG (1995) Progesterone therapy in women with complex partial and secondary generalized seizures. Neurology 45:1660–1662CrossRefPubMedGoogle Scholar
  40. 40.
    Herzog AG (1999) Progesterone therapy in women with epilepsy: a 3-year follow-up. Neurology 52:1917–1918CrossRefPubMedGoogle Scholar
  41. 41.
    Zampieri S, Mellon SH, Butters TD, Nevyjel M, Covey DF, Bembi B, Dardis A (2009) Oxidative stress in NPC1 deficient cells: protective effect of allopregnanolone. J Cell Mol Med 13:3786–3796CrossRefPubMedGoogle Scholar
  42. 42.
    Grewal AK, Jaggi AS, Rana AC, Singh N (2013) Effect of neurosteroid modulation on global ischaemia-reperfusion-induced cerebral injury in mice. Korean J Physiol Pharmacol 17:485–491CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Qian X, Cao H, Ma Q, Wang Q, He W, Qin P, Ji B, Yuan K, Yang F, Liu X, Lian Q, Li J (2015) Allopregnanolone attenuates Abeta25-35-induced neurotoxicity in PC12 cells by reducing oxidative stress. Int J Clin Exp Med 8:13610–13615PubMedPubMedCentralGoogle Scholar
  44. 44.
    Behl C (2002) Estrogen can protect neurons: modes of action. J Steroid Biochem Mol Biol 83:195–197CrossRefPubMedGoogle Scholar
  45. 45.
    Prokai L, Prokai-Tatrai K, Perjesi P, Zharikova AD, Perez EJ, Liu R, Simpkins JW (2003) Quinol-based cyclic antioxidant mechanism in estrogen neuroprotection. Proc Natl Acad Sci USA 100:11741–117461CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Sarnowska A, Beresewicz M, Zablocka B, Domanska-Janik K (2009) Diazepam neuroprotection in excitotoxic and oxidative stress involves a mitochondrial mechanism additional to the GABAAR and hypothermic effects. Neurochem Int 55:164–1732CrossRefPubMedGoogle Scholar
  47. 47.
    Wang C, Xie N, Wang Y, Li Y, Ge X, Wang M (2015) Role of the mitochondrial calcium uniporter in rat hippocampal neuronal death after pilocarpine-induced status epilepticus. Neurochem Res 40:1739–1746CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Neurology and Epilepsy Research InstituteYonsei University College of MedicineSeoulRepublic of Korea
  2. 2.Brain Korea 21 PLUS Project for Medical ScienceYonsei UniversitySeoulRepublic of Korea
  3. 3.Department of NeurologyInje University, Haeundae Paik HospitalBusanRepublic of Korea

Personalised recommendations