Advertisement

Neurochemical Research

, Volume 43, Issue 7, pp 1413–1423 | Cite as

A Docosahexaenoic Acid-Derived Pro-resolving Agent, Maresin 1, Protects Motor Neuron Cells Death

  • Kazuki Ohuchi
  • Yoko Ono
  • Mina Joho
  • Kazuhiro Tsuruma
  • Shiho Ogami
  • Shinsaku Yamane
  • Michinori Funato
  • Hideo Kaneko
  • Shinsuke Nakamura
  • Hideaki HaraEmail author
  • Masamitsu ShimazawaEmail author
Original Paper
  • 224 Downloads

Abstract

Maresin 1 is a novel pro-resolving mediator derived from docosahexaenoic acid (DHA), with potent anti-inflammation effects against several animal models, including brain ischemia, sepsis, and lung fibrosis. However, its effect against motor neuron cell death is still not investigated. Therefore, we investigated the effects of maresin 1 on several stress-induced motor neuron cell death. Maresin 1 suppressed combinatorial stress which was evoked by superoxide dismutase 1 (SOD1)G93A and serum-free, -induced motor neuron cells death in a concentration-dependent manner, and had a stronger neuroprotective effective than DHA. Maresin 1 also had neuroprotective effects against transactivation response DNA-binding protein (TDP)-43A315T and serum-free stress, H2O2, and tunicamycin-induced cell death. Maresin 1 reduced the reactive oxygen species (ROS) production caused by SOD1G93A or TDP-43A315T. Moreover, maresin 1 suppressed the NF-κB activation induced by SOD1G93A and serum-free stress. These data indicate that maresin 1 has motor neuron protective effects against several stresses by reduction of ROS production or attenuation of the NF-κB activation. Maresin 1 also had neuroprotective effects against H2O2, and tunicamycin-induced cell death in a concentration-dependent manner. Finally, maresin 1 ameliorated the motor function deficits of spinal muscular atrophy model in which endoplasmic reticulum stress was upregulated. Thus, maresin 1 may be beneficial to protect against motor neuron diseases.

Keywords

Maresin 1 Amyotrophic lateral sclerosis Spinal muscular atrophy Reactive oxygen species Nuclear factor-kappa B 

Notes

Author Contributions

YO, MJ, KO: study design, the collection, analysis and interpretation of data, the writing of the report; KT: study design, the collection, analysis and interpretation of data; SO, SY: study design and the decision to submit the article for publication; HH, MS: study design, the collection, analysis and interpretation of data, the writing of the report and the decision to submit the article for publication.

Funding

This work was supported by Ono pharmaceutical Co., Ltd (Osaka, Japan) in this manuscript. This sponsor is involved in the study design and the decision to submit the article for publication.

Compliance with Ethical Standards

Conflict of interest

Prof. Hideaki Hara has received a research grant from Ono pharmaceutical Co., Ltd. The other authors declare that have no conflict of interest.

References

  1. 1.
    Serhan CN, Hong S, Gronert K, Colgan SP, Devchand PR, Mirick G, Moussignac RL (2002) Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J Exp Med 196:1025–1037CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bahety P, Tan YM, Hong Y, Zhang L, Chan EC, Ee PL (2014) Metabotyping of docosahexaenoic acid-treated Alzheimer’s disease cell model. PloS ONE 9:e90123CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hong SH, Khoutorova L, Bazan NG, Belayev L (2015) Docosahexaenoic acid improves behavior and attenuates blood-brain barrier injury induced by focal cerebral ischemia in rats. Exp Transl Stroke Med 7:3CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Barrett EC, McBurney MI, Ciappio ED (2014) Omega-3 fatty acid supplementation as a potential therapeutic aid for the recovery from mild traumatic brain injury/concussion. Adv Nutr 5:268–277CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Yip PK, Pizzasegola C, Gladman S, Biggio ML, Marino M, Jayasinghe M, Ullah F, Dyall SC, Malaspina A, Bendotti C, Michael-Titus A (2013) The omega-3 fatty acid eicosapentaenoic acid accelerates disease progression in a model of amyotrophic lateral sclerosis. PloS ONE 8:e61626CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Fitzgerald KC, O’Reilly EJ, Falcone GJ, McCullough ML, Park Y, Kolonel LN, Ascherio A (2014) Dietary omega-3 polyunsaturated fatty acid intake and risk for amyotrophic lateral sclerosis. JAMA Neurol 71:1102–1110CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Seki H, Tani Y, Arita M (2009) Omega-3 PUFA derived anti-inflammatory lipid mediator resolvin E1. Prostaglandins Other Lipid Mediat 89:126–130CrossRefPubMedGoogle Scholar
  8. 8.
    Zhao Y, Calon F, Julien C, Winkler JW, Petasis NA, Lukiw WJ, Bazan NG (2011) Docosahexaenoic acid-derived neuroprotectin D1 induces neuronal survival via secretase- and PPARgamma-mediated mechanisms in Alzheimer’s disease models. PloS ONE 6:e15816CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Nordgren TM, Bauer CD, Heires AJ, Poole JA, Wyatt TA, West WW, Romberger DJ (2015) Maresin-1 reduces airway inflammation associated with acute and repetitive exposures to organic dust. Transl Res 166:57–69CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Gong J, Liu H, Wu J, Qi H, Wu ZY, Shu HQ, Li HB, Chen L, Wang YX, Li B, Tang M, Ji YD, Yuan SY, Yao SL, Shang Y (2015) Maresin 1 prevents lipopolysaccharide-induced neutrophil survival and accelerates resolution of acute lung injury. Shock 44:371–380CrossRefPubMedGoogle Scholar
  11. 11.
    Xian W, Wu Y, Xiong W, Li L, Li T, Pan S, Song L, Hu L, Pei L, Yao S, Shang Y (2016) The pro-resolving lipid mediator Maresin 1 protects against cerebral ischemia/reperfusion injury by attenuating the pro-inflammatory response. Biochem Biophys Res Commun 472:175–181CrossRefPubMedGoogle Scholar
  12. 12.
    Bunton-Stasyshyn RK, Saccon RA, Fratta P, Fisher EM (2015) SOD1 function and its implications for amyotrophic lateral sclerosis pathology: new and renascent themes. Neuroscientist 21:519–529CrossRefPubMedGoogle Scholar
  13. 13.
    Rakhit R, Chakrabartty A (2006) Structure, folding, and misfolding of Cu, Zn superoxide dismutase in amyotrophic lateral sclerosis. Biochim Biophys Acta 1762:1025–1037CrossRefPubMedGoogle Scholar
  14. 14.
    Ayala YM, Pantano S, D’Ambrogio A, Buratti E, Brindisi A, Marchetti C, Romano M, Baralle FE (2005) Human, Drosophila, and C. elegans TDP43: nucleic acid binding properties and splicing regulatory function. J Mol Biol 348:575–588CrossRefPubMedGoogle Scholar
  15. 15.
    Guo W, Chen Y, Zhou X, Kar A, Ray P, Chen X, Rao EJ, Yang M, Ye H, Zhu L, Liu J, Xu M, Yang Y, Wang C, Zhang D, Bigio EH, Mesulam M, Shen Y, Xu Q, Fushimi K, Wu JY (2011) An ALS-associated mutation affecting TDP-43 enhances protein aggregation, fibril formation and neurotoxicity. Nat Struct Mol Biol 18:822–830CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Alami NH, Smith RB, Carrasco MA, Williams LA, Winborn CS, Han SS, Kiskinis E, Winborn B, Freibaum BD, Kanagaraj A, Clare AJ, Badders NM, Bilican B, Chaum E, Chandran S, Shaw CE, Eggan KC, Maniatis T, Taylor JP (2014) Axonal transport of TDP-43 mRNA granules is impaired by ALS-causing mutations. Neuron 81:536–543CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Estes PS, Boehringer A, Zwick R, Tang JE, Grigsby B, Zarnescu DC (2011) Wild-type and A315T mutant TDP-43 exert differential neurotoxicity in a Drosophila model of ALS. Hum Mol Genet 20:2308–2321CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Correia AS, Patel P, Dutta K, Julien JP (2015) Inflammation induces TDP-43 mislocalization and aggregation. PloS ONE 10:e0140248CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Liu Y, Hao W, Dawson A, Liu S, Fassbender K (2009) Expression of amyotrophic lateral sclerosis-linked SOD1 mutant increases the neurotoxic potential of microglia via TLR2. J Biol Chem 284:3691–3699CrossRefPubMedGoogle Scholar
  20. 20.
    Coovert DD, Le TT, McAndrew PE, Strasswimmer J, Crawford TO, Mendell JR, Coulson SE, Androphy EJ, Prior TW, Burghes AH (1997) The survival motor neuron protein in spinal muscular atrophy. Hum Mol Genet 6:1205–1214CrossRefPubMedGoogle Scholar
  21. 21.
    Ono Y, Tanaka H, Takata M, Nagahara Y, Noda Y, Tsuruma K, Shimazawa M, Hozumi I, Hara H (2014) SA4503, a sigma-1 receptor agonist, suppresses motor neuron damage in in vitro and in vivo amyotrophic lateral sclerosis models. Neurosci Lett 559:174–178CrossRefPubMedGoogle Scholar
  22. 22.
    Zhang T, Baehr W, Fu Y (2012) Chemical chaperone TUDCA preserves cone photoreceptors in a mouse model of Leber congenital amaurosis. Investig Ophthalmol Vis Sci 53:3349–3356CrossRefGoogle Scholar
  23. 23.
    Ando S, Funato M, Ohuchi K, Kameyama T, Inagaki S, Seki J, Kawase C, Tsuruma K, Shimazawa M, Kaneko H, Hara H (2017) Edaravone is a candidate agent for spinal muscular atrophy: in vitro analysis using a human induced pluripotent stem cells-derived disease model. Eur J Pharmacol 814:161–168CrossRefPubMedGoogle Scholar
  24. 24.
    Rojas F, Cortes N, Abarzua S, Dyrda A, van Zundert B (2014) Astrocytes expressing mutant SOD1 and TDP43 trigger motoneuron death that is mediated via sodium channels and nitroxidative stress. Front Cell Neurosci 8:24CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Li RC, Morris MW, Lee SK, Pouranfar F, Wang Y, Gozal D (2008) Neuroglobin protects PC12 cells against oxidative stress. Brain Res 1190:159–166CrossRefPubMedGoogle Scholar
  26. 26.
    Ozgur R, Turkan I, Uzilday B, Sekmen AH (2014) Endoplasmic reticulum stress triggers ROS signalling, changes the redox state, and regulates the antioxidant defence of Arabidopsis thaliana. J Exp Bot 65:1377–1390CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kinsella S, Konig HG, Prehn JH (2016) Bid promotes K63-linked polyubiquitination of tumor necrosis factor receptor associated factor 6 (TRAF6) and sensitizes to mutant SOD1-induced proinflammatory signaling in microglia. eNeuro  https://doi.org/10.1523/ENEURO.0099-15.2016 PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Lee M, Lee NY, Chung KS, Cheon SY, Lee KT, An HJ (2017) Roxatidine attenuates mast cell-mediated allergic inflammation via inhibition of NF-kappaB and p38 MAPK activation. Sci Rep 7:41721CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Baichwal VR, Baeuerle PA (1997) Activate NF-kappa B or die? Curr Biol CB 7:R94-96CrossRefGoogle Scholar
  30. 30.
    Ng SY, Soh BS, Rodriguez-Muela N, Hendrickson DG, Price F, Rinn JL, Rubin LL (2015) Genome-wide RNA-Seq of human motor neurons implicates selective ER stress activation in spinal muscular atrophy. Cell Stem Cell 17:569–584CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Serhan CN, Yang R, Martinod K, Kasuga K, Pillai PS, Porter TF, Oh SF, Spite M (2009) Maresins: novel macrophage mediators with potent antiinflammatory and proresolving actions. J Exp Med 206:15–23CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Chattopadhyay M, Valentine JS (2009) Aggregation of copper-zinc superoxide dismutase in familial and sporadic ALS. Antioxid redox Signal 11:1603–1614CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Borchelt DR, Lee MK, Slunt HS, Guarnieri M, Xu ZS, Wong PC, Brown RH Jr, Price DL, Sisodia SS, Cleveland DW (1994) Superoxide dismutase 1 with mutations linked to familial amyotrophic lateral sclerosis possesses significant activity. Proc Natl Acad Sci USA 91:8292–8296CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Yamagishi S, Koyama Y, Katayama T, Taniguchi M, Hitomi J, Kato M, Aoki M, Itoyama Y, Kato S, Tohyama M (2007) An in vitro model for Lewy body-like hyaline inclusion/astrocytic hyaline inclusion: induction by ER stress with an ALS-linked SOD1 mutation. PloS ONE 2:e1030CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Hensley K, Mhatre M, Mou S, Pye QN, Stewart C, West M, Williamson KS (2006) On the relation of oxidative stress to neuroinflammation: lessons learned from the G93A-SOD1 mouse model of amyotrophic lateral sclerosis. Antioxid Redox Signal 8:2075–2087CrossRefPubMedGoogle Scholar
  36. 36.
    Gitcho MA, Baloh RH, Chakraverty S, Mayo K, Norton JB, Levitch D, Hatanpaa KJ, White CL 3rd, Bigio EH, Caselli R, Baker M, Al-Lozi MT, Morris JC, Pestronk A, Rademakers R, Goate AM, Cairns NJ (2008) TDP-43 A315T mutation in familial motor neuron disease. Ann Neurol 63:535–538CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Finelli MJ, Liu KX, Wu Y, Oliver PL, Davies KE (2015) Oxr1 improves pathogenic cellular features of ALS-associated FUS and TDP-43 mutations. Hum Mol Genet 24:3529–3544CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Wang X, Zhou S, Ding X, Ma M, Zhang J, Zhou Y, Wu E, Teng J (2015) Activation of ER stress and autophagy induced by TDP-43 A315T as pathogenic mechanism and the corresponding histological changes in skin as potential biomarker for ALS with the mutation. Int J Biol Sci 11:1140–1149CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Cleveland DW, Rothstein JD (2001) From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat Rev Neurosci 2:806–819CrossRefPubMedGoogle Scholar
  40. 40.
    van Zundert B, Izaurieta P, Fritz E, Alvarez FJ (2012) Early pathogenesis in the adult-onset neurodegenerative disease amyotrophic lateral sclerosis. J Cell Biochem 113:3301–3312CrossRefPubMedGoogle Scholar
  41. 41.
    Pasinelli P, Brown RH (2006) Molecular biology of amyotrophic lateral sclerosis: insights from genetics. Nat Rev Neurosci 7:710–723CrossRefPubMedGoogle Scholar
  42. 42.
    Rindt H, Feng Z, Mazzasette C, Glascock JJ, Valdivia D, Pyles N, Crawford TO, Swoboda KJ, Patitucci TN, Ebert AD, Sumner CJ, Ko CP, Lorson CL (2015) Astrocytes influence the severity of spinal muscular atrophy. Hum Mol Genet 24:4094–4102CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Hirayama O, Nakamura K, Hamada S, Kobayasi Y (1994) Singlet oxygen quenching ability of naturally occurring carotenoids. Lipids 29:149–150CrossRefPubMedGoogle Scholar
  44. 44.
    Marcon R, Bento AF, Dutra RC, Bicca MA, Leite DF, Calixto JB (2013) Maresin 1, a proresolving lipid mediator derived from omega-3 polyunsaturated fatty acids, exerts protective actions in murine models of colitis. J Immunol 191:4288–4298CrossRefPubMedGoogle Scholar
  45. 45.
    Li R, Wang Y, Zhao E, Wu K, Li W, Shi L, Wang D, Xie G, Yin Y, Deng M, Zhang P, Tao K (2016) Maresin 1, a proresolving lipid mediator, mitigates carbon tetrachloride-induced liver injury in mice. Oxid Med Cell Longev.  https://doi.org/10.1155/2016/9203716 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Ni A, Yang T, Mesnard-Hoaglin NA, Gutierrez R, Stubbs EB Jr, McGuire SO, Sanders VM, Jones KJ, Foecking EM, Xin J (2016) Th17 cell response in SOD1G93A mice following motor nerve injury. Mediat Inflamm.  https://doi.org/10.1155/2016/6131234 CrossRefGoogle Scholar
  47. 47.
    Dang TN, Lim NK, Grubman A, Li QX, Volitakis I, White AR, Crouch PJ (2014) Increased metal content in the TDP-43(A315T) transgenic mouse model of frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Front Aging Neurosci 6:15CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Campbell KJ, Rocha S, Perkins ND (2004) Active repression of antiapoptotic gene expression by RelA(p65) NF-kappa B. Mol Cell 13:853–865CrossRefPubMedGoogle Scholar
  49. 49.
    Schreck R, Rieber P, Baeuerle PA (1991) Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J 10:2247–2258PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Tam AB, Mercado EL, Hoffmann A, Niwa M (2012) ER stress activates NF-kappaB by integrating functions of basal IKK activity, IRE1 and PERK. PloS ONE 7:e45078CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Morgan MJ, Liu ZG (2011) Crosstalk of reactive oxygen species and NF-kappaB signaling. Cell Res 21:103–115CrossRefPubMedGoogle Scholar
  52. 52.
    Dong J, Jimi E, Zeiss C, Hayden MS, Ghosh S (2010) Constitutively active NF-kappaB triggers systemic TNFalpha-dependent inflammation and localized TNFalpha-independent inflammatory disease. Genes Dev 24:1709–1717CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Oshio T, Kawashima R, Kawamura YI, Hagiwara T, Mizutani N, Okada T, Otsubo T, Inagaki-Ohara K, Matsukawa A, Haga T, Kakuta S, Iwakura Y, Hosokawa S, Dohi T (2014) Chemokine receptor CCR8 is required for lipopolysaccharide-triggered cytokine production in mouse peritoneal macrophages. PloS ONE 9:e94445CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Toth VE, Feher A, Nemeth J, Gyertyan I, Zadori ZS, Gyires K (2018) Modulation of central endocannabinoid system results in gastric mucosal protection in the rat. Brain Res Bull 139:224–234CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Kazuki Ohuchi
    • 1
    • 3
  • Yoko Ono
    • 1
  • Mina Joho
    • 1
  • Kazuhiro Tsuruma
    • 1
  • Shiho Ogami
    • 2
  • Shinsaku Yamane
    • 2
  • Michinori Funato
    • 3
  • Hideo Kaneko
    • 3
  • Shinsuke Nakamura
    • 1
  • Hideaki Hara
    • 1
    Email author
  • Masamitsu Shimazawa
    • 1
    Email author
  1. 1.Molecular Pharmacology, Department of Biofunctional EvaluationGifu Pharmaceutical UniversityGifuJapan
  2. 2.Ono Pharmaceutical Co., Ltd.OsakaJapan
  3. 3.Department of Clinical ResearchNational Hospital Organization, Nagara Medical CenterGifuJapan

Personalised recommendations