Neurochemical Research

, Volume 44, Issue 3, pp 726–733 | Cite as

PDGF Modulates Synaptic Excitability and Short-Latency Afferent Inhibition in Multiple Sclerosis

  • Dalila Mango
  • Robert NisticòEmail author
  • Roberto Furlan
  • Annamaria Finardi
  • Diego CentonzeEmail author
  • Francesco Mori
Original Paper


Maintenance of synaptic plasticity reserve is crucial to contrast clinical deterioration in MS and PDGF plays a key role in this phenomenon. Indeed, higher cerebrospinal fluid PDGF concentration correlates with improved clinical recovery after a relapse, and the amplitude of LTP-like cortical plasticity in relapsing-remitting MS patients. However, LTP-like cortical plasticity varies depending on the individual level of inhibitory cortical circuits. Aim of this study was to explore whether PDGF-CSF concentration correlates with inhibitory cortical circuits explored by means of transcranial magnetic stimulation in patients affected by relapsing-remitting MS. We further performed electrophysiological experiments evaluating GABAergic transmission in the experimental autoimmune encephalomyelitis (EAE) hippocampus. Our results reveal that increased CSF PDGF concentration correlates with decreased short afferent inhibition in the motor cortex in MS patients and decreased GABAergic activity in EAE. These findings show that PDGF affects GABAergic activity both in MS patients and in EAE hippocampus.


GABA Long term potentiation PDGF CSF Paired pulse Transcranial magnetic stimulation 



Artificial cerebrospinal fluid


Complete Freund adjuvant


Central nervous system


Experimental autoimmune encephalomyelitis


Interstimulus interval


Long term potentiation


Multiple sclerosis


Paired associative stimulation


Platelet derived growth factor


Resting motor threshold


Short-interval intracortical inhibition


Short-latency afferent inhibition


Spontaneous inhibitory postsynaptic current


Transcranial magnetic stimulation



This investigation was supported by 5X1000 Neuromed Project to DC.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Kierdorf K, Wang Y, Neumann H (2010) Immune-mediated CNS damage. Results Probl Cell Differ 51:173–196. CrossRefPubMedGoogle Scholar
  2. 2.
    Schwartz M, Moalem G, Leibowitz-Amit R, Cohen IR (1999) Innate and adaptive immune responses can be beneficial for CNS repair. Trends Neurosci 22:295–299. CrossRefPubMedGoogle Scholar
  3. 3.
    Kerschensteiner M, Stadelmann C, Dechant G, Wekerle H, Hohlfeld R (2003) Neurotrophic cross-talk between the nervous and immune systems: implications for neurological diseases. Ann Neurol 53:292–304. CrossRefPubMedGoogle Scholar
  4. 4.
    Webster HD (1997) Growth factors and myelin regeneration in multiple sclerosis. Mult Scler 3:113–120. CrossRefPubMedGoogle Scholar
  5. 5.
    Chadi G, Fuxe K (1998) Analysis of trophic responses in lesioned brain: focus on basic fibroblast growth factor mechanisms. Braz J Med Biol Res 31:231–241CrossRefPubMedGoogle Scholar
  6. 6.
    Messersmith DJ, Murtie JC, Le TQ, Frost EE, Armstrong RC (2000) Fibroblast growth factor 2 (FGF2) and FGF receptor expression in an experimental demyelinating disease with extensive remyelination. J Neurosci Res 62:241–256. CrossRefPubMedGoogle Scholar
  7. 7.
    Erlandsson A, Enarsson M, Forsberg-Nilsson K (2001) Immature neurons from CNS stem cells proliferate in response to platelet-derived growth factor. J Neurosci 21:3483–3491CrossRefPubMedGoogle Scholar
  8. 8.
    Frost EE, Nielsen JA, Le TQ, Armstrong RC (2003) PDGF and FGF2 regulate oligodendrocyte progenitor responses to demyelination. J Neurobiol 54:457–572. CrossRefPubMedGoogle Scholar
  9. 9.
    Ponomarev ED, Shriver LP, Maresz K, Pedras-Vasconcelos J, Verthelyi D, Dittel BN (2007) GM-CSF production by autoreactive T cells is required for the activation of microglial cells and the onset of experimental autoimmune encephalomyelitis. J Immunol 178:39–48. CrossRefPubMedGoogle Scholar
  10. 10.
    Rottlaender A, Villwock H, Addicks K, Kuerten S (2011) Neuroprotective role of fibroblast growth factor-2 in experimental autoimmune encephalomyelitis. Immunology 133:370–378. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Vana AC, Flint NC, Harwood NE, Le TQ, Fruttiger M, Armstrong RC (2007) Platelet-derived growth factor promotes repair of chronically demyelinated white matter. J Neuropathol Exp Neurol 66:975–988. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Williams BP, Park JK, Alberta JA, Muhlebach SG, Hwang GY, Roberts TM, Stiles CD (1997) A PDGF-regulated immediate early gene response initiates neuronal differentiation in ventricular zone progenitor cells. Neuron 18:553–562. CrossRefPubMedGoogle Scholar
  13. 13.
    Koehler NK, Roebbert M, Dehghani K, Ballmaier M, Claus P, von Hoersten S, Shing M, Odin P, Strehlau J, Heidenreich F (2008) Up-regulation of platelet-derived growth factor by peripheral-blood leukocytes during experimental allergic encephalomyelitis. J Neurosci Res 86:392–402. CrossRefPubMedGoogle Scholar
  14. 14.
    Peng F, Yao H, Bai X, Zhu X, Reiner BC, Beazely M, Funa K, Xiong H, Buch S (2010) Platelet-derived growth factor-mediated induction of the synaptic plasticity gene Arc/Arg3.1. J Biol Chem 285:21615–21624. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Mori F, Nicoletti CG, Rossi S, Motta C, Kusayanagi H, Bergami A, Studer V, Buttari F, Barbieri F, Weiss S, Nisticò R, Martino G, Furlan R, Centonze D (2014) Growth factors and synaptic plasticity in relapsing-remitting multiple sclerosis. Neuromol Med 16:490–498. CrossRefGoogle Scholar
  16. 16.
    Mori F, Rossi S, Piccinin S, Motta C, Mango D, Kusayanagi H, Bergami A, Studer V, Nicoletti CG, Buttari F, Barbieri F, Mercuri NB, Martino G, Furlan R, Nisticò R, Centonze D (2013) Synaptic plasticity and PDGF signaling defects underlie clinical progression in multiple sclerosis. J Neurosci 33:19112–19119. CrossRefPubMedGoogle Scholar
  17. 17.
    Cooke SF, Bliss TV (2006) Plasticity in the human central nervous system. Brain 129(Pt 7):1659–1673CrossRefPubMedGoogle Scholar
  18. 18.
    Matsuyama S, Taniguchi T, Kadoyama K, Matsumoto A (2008) Long-term potentiation-like facilitation through GABAA receptor blockade in the mouse dentate gyrus in vivo. Neuroreport 19(18):1809–1813. CrossRefPubMedGoogle Scholar
  19. 19.
    Gong N, Li Y, Cai GQ, Niu RF, Fang Q, Wu K, Chen Z, Lin LN, Xu L, Fei J, Xu TL (2009) GABA transporter-1 activity modulates hippocampal theta oscillation and theta burst stimulation-induced long-term potentiation. J Neurosci 29(50):15836–15845. CrossRefPubMedGoogle Scholar
  20. 20.
    Murase N, Cengiz B, Rothwell JC (2015) Inter-individual variation in the after-effect of paired associative stimulation can be predicted from short-interval intracortical inhibition with the threshold tracking method. Brain Stimul 8(1):105–113. CrossRefPubMedGoogle Scholar
  21. 21.
    Cash RF, Jegatheeswaran G, Ni Z, Chen R (2017) Modulation of the direction and magnitude of hebbian plasticity in human motor cortex by stimulus intensity and concurrent inhibition. Brain Stimul 10:83–90CrossRefPubMedGoogle Scholar
  22. 22.
    Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, Fujihara K, Havrdova E, Hutchinson M, Kappos L, Lublin FD, Montalban X, O’Connor P, Sandberg-Wollheim M, Thompson AJ, Waubant E, Weinshenker B, Wolinsky JS (2011) Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 69:292–302. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, Di Lazzaro V, Ferreri F, Fitzgerald PB, George MS, Hallett M, Lefaucheur JP, Langguth B, Matsumoto H, Miniussi C, Nitsche MA, Pascual-Leone A, Paulus W, Rossi S, Rothwell JC, Siebner HR, Ugawa Y, Walsh V, Ziemann U (2015) Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol 126:1071–1107. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kujirai T, Caramia MD, Rothwell JC, Day BL, Thompson PD, Ferbert A, Wroe S, Asselman P, Marsden CD (1993) Corticocortical inhibition in human motor cortex. J Physiol 471:501–519CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Di Lazzaro V, Oliviero A, Mazzone P, Pilato F, Saturno E, Dileone M, Insola A, Tonali PA, Rothwell JC (2002) Short-term reduction of intracortical inhibition in the human motor cortex induced by repetitive transcranial magnetic stimulation. Exp Brain Res 147:108–113. CrossRefPubMedGoogle Scholar
  26. 26.
    Centonze D, Muzio L, Rossi S, Cavasinni F, De Chiara V, Bergami A et al (2009) Inflammation triggers synaptic alteration and degeneration in experimental autoimmune encephalomyelitis. J Neurosci 29:3442–3452. CrossRefPubMedGoogle Scholar
  27. 27.
    Nisticò R, Mango D, Mandolesi G, Piccinin S, Berretta N, Pignatelli M et al (2013) Inflammation subverts hippocampal synaptic plasticity in experimental multiple sclerosis. PLoS ONE 8(1):e54666. CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Di Lazzaro V, Oliviero A, Profice P, Pennisi MA, Di Giovanni S, Zito G et al (2000) Muscarinic receptor blockade has differential effects on the excitability of intracortical circuits in the human motor cortex. Exp Brain Res 135:455–461CrossRefPubMedGoogle Scholar
  29. 29.
    Di Lazzaro V, Oliviero A, Tonali PA, Marra C, Daniele A, Profice P et al (2002) Noninvasive in vivo assessment of cholinergic cortical circuits in AD using transcranial magnetic stimulation. Neurology 59:392–397CrossRefPubMedGoogle Scholar
  30. 30.
    Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Dileone M, Marra C et al (2004) Motor cortex hyperexcitability to transcranial magnetic stimulation in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 75:555–559CrossRefPubMedGoogle Scholar
  31. 31.
    Di Lazzaro V, Pilato F, Dileone M, Profice P, Ranieri F, Ricci V, Bria P, Tonali PA, Ziemann U (2007) Segregating two inhibitory circuits in human motor cortex at the level of GABAA receptor subtypes: a TMS study. Clin Neurophysiol 118:2207–2214CrossRefPubMedGoogle Scholar
  32. 32.
    Ziemann U (2004) TMS and drugs. Clin Neurophysiol 115:1717–1729CrossRefPubMedGoogle Scholar
  33. 33.
    Mori F, Nicoletti CG, Rossi S, Motta C, Kusayanagi H, Bergami A, Studer V, Buttari F, Barbieri F, Weiss S, Nisticò R, Martino G, Furlan R, Centonze D (2014) Growth factors and synaptic plasticity in relapsing-remitting multiple sclerosis. Neuromol Med 16:490–498CrossRefGoogle Scholar
  34. 34.
    Caramia MD, Palmieri MG, Desiato MT, Boffa L, Galizia P, Rossini PM, Centonze D, Bernardi G (2004) Brain excitability changes in the relapsing and remitting phases of multiple sclerosis: a study with transcranial magnetic stimulation. Clin Neurophysiol 115:956–965. CrossRefPubMedGoogle Scholar
  35. 35.
    Baroncelli L, Braschi C, Spolidoro M, Begenisic T, Maffei L, Sale A (2011) Brain plasticity and disease: a matter of inhibition. Neural Plast 2011:286073. CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Imbrosci B, Mittmann T (2011) Functional consequences of the disturbances in the GABA-mediated inhibition induced by injuries in the cerebral cortex. Neural Plast 2011:614329. CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Hess G, Donoghue JP (1996) Long-term depression of horizontal connections in rat motor cortex. Eur J Neurosci 8:658–665CrossRefPubMedGoogle Scholar
  38. 38.
    Stäubli U, Scafidi J, Chun D (1999) GABAB receptor antagonism: facilitatory effects on memory parallel those on LTP induced by TBS but not HFS. J Neurosci 19:4609–4615CrossRefPubMedGoogle Scholar
  39. 39.
    Burgdorf J, Zhang XL, Colechio EM, Ghoreishi-Haack N, Gross A, Kroes RA, Stanton PK, Moskal JR (2015) Insulin-like growth factor I produces an antidepressant-like effect and elicits N-methyl-d-aspartate receptor independent long-term potentiation of synaptic transmission in medial prefrontal cortex and hippocampus. Int J Neuropsychopharmacol 19(2):pyv101. CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Bramham CR, Messaoudi E (2005) BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol 76:99–125CrossRefPubMedGoogle Scholar
  41. 41.
    Stouthart PJ, Deijen JB, Roffel M, Delemarre-van de Waal HA (2003) Quality of life of growth hormone (GH) deficient young adults during discontinuation and restart of GH therapy. Psychoneuroendocrinology 28:612–626CrossRefPubMedGoogle Scholar
  42. 42.
    Lasaite L, Bunevicius R, Lasiene D, Lasas L (2004) Psychological functioning after growth hormone therapy in adult growth hormone deficient patients: endocrine and body composition correlates. Medicina 40:740–744PubMedGoogle Scholar
  43. 43.
    Thompson JL, Butterfield GE, Gylfadottir UK, Yesavage J, Marcus R, Hintz RL, Pearman A, Hoffman AR (1998) Effects of human growth hormone, insulin-like growth factor I, and diet and exercise on body composition of obese postmenopausal women. T Clin Endocrinol Metab 83:1477–1484Google Scholar
  44. 44.
    Björkholm C, Monteggia LM (2016) BDNF—a key transducer of antidepressant effects. Neuropharmacology 102:72–79CrossRefPubMedGoogle Scholar
  45. 45.
    Frota ER, Rodrigues DH, Donadi EA, Brum DG, Maciel DR, Teixeira AL (2009) Increased plasma levels of brain derived neurotrophic factor (BDNF) after multiple sclerosis relapse. Neurosci Lett 460:130–132CrossRefPubMedGoogle Scholar
  46. 46.
    Nardone R, Bergmann J, De Blasi P, Kronbichler M, Kraus J, Caleri F, Tezzon F, Ladurner G, Golaszewski S (2010) Cholinergic dysfunction and amnesia in patients with Wernicke-Korsakoff syndrome: a transcranial magnetic stimulation study. J Neural Transm 117:385–391CrossRefPubMedGoogle Scholar
  47. 47.
    Manganelli F, Vitale C, Santangelo G, Pisciotta C, Iodice R, Cozzolino A, Dubbioso R, Picillo M, Barone P, Santoro L (2009) Functional involvement of central cholinergic circuits and visual hallucinations in Parkinson’s disease. Brain 132:2350–2355CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Di Lazzaro V, Oliviero A, Pilato F, Saturno E, Dileone M, Marra C, Ghirlanda S, Ranieri F, Gainotti G, Tonali P (2005) Neurophysiological predictors of long term response to AChE inhibitors in AD patients. J Neurol Neurosurg Psychiatry 76:1064–1069CrossRefPubMedGoogle Scholar
  49. 49.
    Asmussen MJ, Zapallow CM, Jacobs MF, Lee KG, Tsang P, Nelson AJ (2014) Modulation of short-latency afferent inhibition depends on digit and task-relevance. PLoS ONE 9:e104807CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Di Lazzaro V, Pilato F, Dileone M, Tonali PA, Ziemann U (2005) Dissociated effects of diazepam and lorazepam on short-latency afferent inhibition. J Physiol 569:315–323CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Martorana A, Mori F, Esposito Z, Kusayanagi H, Monteleone F, Codecà C, Sancesario G, Bernardi G, Koch G (2009) Dopamine modulates cholinergic cortical excitability in Alzheimer’s disease patients. Neuropsychopharmacology 34:2323–2328CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Dalila Mango
    • 1
  • Robert Nisticò
    • 1
    • 2
    Email author
  • Roberto Furlan
    • 3
  • Annamaria Finardi
    • 3
  • Diego Centonze
    • 4
    • 5
    Email author
  • Francesco Mori
    • 4
    • 5
  1. 1.Neuropharmacology UnitEBRI Rita Levi-Montalcini FoundationRomeItaly
  2. 2.Department of BiologyUniversity of Rome “Tor Vergata”RomeItaly
  3. 3.Clinical Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of NeuroscienceSan Raffaele Scientific InstituteMilanItaly
  4. 4.Neurology and Neurorehabilitation UnitsIRCCS Istituto Neurologico Mediterraneo (INM) NeuromedPozzilliItaly
  5. 5.Multiple Sclerosis Research Unit, Department of Systems MedicineUniversity of Rome “Tor Vergata”RomeItaly

Personalised recommendations