Advertisement

Glutamate Transporters: Expression and Function in Oligodendrocytes

  • Edna Suárez-Pozos
  • Elizabeth J. Thomason
  • Babette FussEmail author
Original Paper

Abstract

Glutamate, the main excitatory neurotransmitter of the vertebrate central nervous system (CNS), is well known as a regulator of neuronal plasticity and neurodevelopment. Such glutamate function is thought to be mediated primarily by signaling through glutamate receptors. Thus, it requires a tight regulation of extracellular glutamate levels and a fine-tuned homeostasis that, when dysregulated, has been associated with a wide range of central pathologies including neuropsychiatric, neurodevelopmental, and neurodegenerative disorders. In the mammalian CNS, extracellular glutamate levels are controlled by a family of sodium-dependent glutamate transporters belonging to the solute carrier family 1 (SLC1) that are also referred to as excitatory amino acid transporters (EAATs). The presumed main function of EAATs has been best described in the context of synaptic transmission where EAATs expressed by astrocytes and neurons effectively regulate extracellular glutamate levels so that synapses can function independently. There is, however, increasing evidence that EAATs are expressed by cells other than astrocytes and neurons, and that they exhibit functions beyond glutamate clearance. In this review, we will focus on the expression and functions of EAATs in the myelinating cells of the CNS, oligodendrocytes. More specifically, we will discuss potential roles of oligodendrocyte-expressed EAATs in contributing to extracellular glutamate homeostasis, and in regulating oligodendrocyte maturation and CNS myelination by exerting signaling functions that have traditionally been associated with glutamate receptors. In addition, we will provide some examples for how dysregulation of oligodendrocyte-expressed EAATs may be involved in the pathophysiology of neurologic diseases.

Keywords

Glutamate Glutamate transporter Oligodendrocyte Myelination Multiple sclerosis Neuropsychiatric disorders 

Notes

Acknowledgements

The authors are supported by Grants from the National Institute of Health (B.F.), the National Multiple Sclerosis Society (B.F.) and the Commonwealth Health Research Board (B.F.).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no potential conflicts.

References

  1. 1.
    Reiner A, Levitz J (2018) Glutamatergic signaling in the central nervous system: ionotropic and metabotropic receptors in concert. Neuron 98:1080–1098CrossRefPubMedGoogle Scholar
  2. 2.
    Jansson LC, Akerman KE (2014) The role of glutamate and its receptors in the proliferation, migration, differentiation and survival of neural progenitor cells. J Neural Transm (Vienna) 121:819–836CrossRefGoogle Scholar
  3. 3.
    Thomas RJ (1995) Excitatory amino acids in health and disease. J Am Geriatr Soc 43:1279–1289CrossRefPubMedGoogle Scholar
  4. 4.
    Meldrum BS (2000) Glutamate as a neurotransmitter in the brain: review of physiology and pathology. J Nutr 130:1007S–1015SCrossRefPubMedGoogle Scholar
  5. 5.
    Miladinovic T, Nashed M, Singh G (2015) Overview of glutamatergic dysregulation in central pathologies. Biomolecules 5:3112–3141CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22:208–215CrossRefPubMedGoogle Scholar
  7. 7.
    Martínez-Lozada Z, Ortega A (2015) Glutamatergic transmission: a matter of three. Neural Plast 2015:1–11CrossRefGoogle Scholar
  8. 8.
    Rose CR, Ziemens D, Untiet V, Fahlke C (2018) Molecular and cellular physiology of sodium-dependent glutamate transporters. Brain Res Bull 136:3–16CrossRefPubMedGoogle Scholar
  9. 9.
    Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105CrossRefPubMedGoogle Scholar
  10. 10.
    Kanai Y, Hediger MA (2004) The glutamate/neutral amino acid transporter family SLC1: molecular, physiological and pharmacological aspects. Pflügers Arch 447:469–479CrossRefPubMedGoogle Scholar
  11. 11.
    Fahlke C, Kortzak D, Machtens J-P (2016) Molecular physiology of EAAT anion channels. Pflügers Arch 468:491–502CrossRefPubMedGoogle Scholar
  12. 12.
    Jiang J, Amara SG (2011) New views of glutamate transporter structure and function: advances and challenges. Neuropharmacology 60:172–181CrossRefPubMedGoogle Scholar
  13. 13.
    Vandenberg RJ, Ryan RM (2013) Mechanisms of glutamate transport. Physiol Rev 93:1621–1657CrossRefPubMedGoogle Scholar
  14. 14.
    Lehre KP, Levy LM, Ottersen OP, Storm-Mathisen J, Danbolt NC (1995) Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations. J Neurosci 15:1835–1853CrossRefPubMedGoogle Scholar
  15. 15.
    Rothstein JD, Martin L, Levey AI, Dykes-Hoberg M, Jin L, Wu D, Nash N, Kuncl RW (1994) Localization of neuronal and glial glutamate transporters. Neuron 13:713–725CrossRefPubMedGoogle Scholar
  16. 16.
    Kanai Y, Hediger MA (1992) Primary structure and functional characterization of a high-affinity glutamate transporter. Nature 360:467–471CrossRefPubMedGoogle Scholar
  17. 17.
    Yamada K, Watanabe M, Shibata T, Tanaka K, Wada K, Inoue Y (1996) EAAT4 is a post-synaptic glutamate transporter at Purkinje cell synapses. Neuroreport 7:2013–2017CrossRefPubMedGoogle Scholar
  18. 18.
    Arriza JL, Eliasof S, Kavanaugh MP, Amara SG (1997) Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc Natl Acad Sci USA 94:4155–4160CrossRefPubMedGoogle Scholar
  19. 19.
    Rauen T, Wiessner M, Sullivan R, Lee A, Pow DV (2004) A new GLT1 splice variant: cloning and immunolocalization of GLT1c in the mammalian retina and brain. Neurochem Int 45:1095–1106CrossRefPubMedGoogle Scholar
  20. 20.
    Vallejo-Illarramendi A, Domercq M, Matute C (2005) A novel alternative splicing form of excitatory amino acid transporter 1 is a negative regulator of glutamate uptake. J Neurochem 95:341–348CrossRefPubMedGoogle Scholar
  21. 21.
    Kalariti N, Pissimissis N, Koutsilieris M (2005) The glutamatergic system outside the CNS and in cancer biology. Expert Opin Investig Drugs 14:1487–1496CrossRefPubMedGoogle Scholar
  22. 22.
    Kolodziejczyk K, Saab AS, Nave KA, Attwell D (2010) Why do oligodendrocyte lineage cells express glutamate receptors? F1000. Biol Rep 2:57Google Scholar
  23. 23.
    Butt AM, Fern RF, Matute C (2014) Neurotransmitter signaling in white matter. Glia 62:1762–1779CrossRefPubMedGoogle Scholar
  24. 24.
    Condorelli DF, Conti F, Gallo V, Kirchhoff F, Seifert G, Steinhäuser C, Verkhratsky A, Yuan X (1999) Expression and functional analysis of glutamate receptors in glial cells. Adv Exp Med Biol 468:49–67CrossRefPubMedGoogle Scholar
  25. 25.
    Spitzer S, Volbracht K, Lundgaard I, Káradóttir RT (2016) Glutamate signalling: A multifaceted modulator of oligodendrocyte lineage cells in health and disease. Neuropharmacology 110:574–585CrossRefPubMedGoogle Scholar
  26. 26.
    Baumann N, Pham-Dinh D (2001) Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81:871–927CrossRefPubMedGoogle Scholar
  27. 27.
    Pfeiffer SE, Warrington AE, Bansal R (1993) The oligodendrocyte and its many cellular processes. Trends Cell Biol 3:191–197CrossRefPubMedGoogle Scholar
  28. 28.
    Bergles DE, Jabs R, Steinhäuser C (2010) Neuron-glia synapses in the brain. Brain Res Rev 63:130–137CrossRefPubMedGoogle Scholar
  29. 29.
    Kukley M, Capetillo-Zarate E, Dietrich D (2007) Vesicular glutamate release from axons in white matter. Nat Neurosci 10:311–320CrossRefPubMedGoogle Scholar
  30. 30.
    De Biase LM, Nishiyama A, Bergles DE (2010) Excitability and synaptic communication within the oligodendrocyte lineage. J Neurosci 30:3600–3611CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ziskin JL, Nishiyama A, Rubio M, Fukaya M, Bergles DE (2007) Vesicular release of glutamate from unmyelinated axons in white matter. Nat Neurosci 10:321–330CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Etxeberria A, Mangin J-M, Aguirre A, Gallo V (2010) Adult-born SVZ progenitors receive transient synapses during remyelination in corpus callosum. Nat Neurosci 13:287–289CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Káradóttir R, Attwell D (2006) Neurotransmitter receptors in the life and death of oligodendrocytes. Neuroscience 145:1426–1438CrossRefPubMedGoogle Scholar
  34. 34.
    Wake H, Ortiz FC, Woo DH, Lee PR, Angulo MC, Fields RD (2015) Nonsynaptic junctions on myelinating glia promote preferential myelination of electrically active axons. Nat Commun 6:7844CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Hines JH, Ravanelli AM, Schwindt R, Scott EK, Appel B (2015) Neuronal activity biases axon selection for myelination in vivo. Nat Neurosci 18:683–689CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Almeida RG, Lyons DA (2017) On Myelinated Axon Plasticity and Neuronal Circuit Formation and Function. J Neurosci 37:10023–10034CrossRefPubMedGoogle Scholar
  37. 37.
    Bergles DE, Richardson WD (2015) Oligodendrocyte Development and Plasticity. Cold Spring Harb Perspect Biol 8:a020453CrossRefPubMedGoogle Scholar
  38. 38.
    Fields RD (2015) A new mechanism of nervous system plasticity: activity-dependent myelination. Nat Rev Neurosci 16:756–767CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Forbes TA, Gallo V (2017) All wrapped up: environmental effects on myelination. Trends Neurosci 40:572–587CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Gibson EM, Geraghty AC, Monje M (2018) Bad wrap: myelin and myelin plasticity in health and disease. Dev Neurobiol 78:123–135CrossRefPubMedGoogle Scholar
  41. 41.
    Mangin J-M, Li P, Scafidi J, Gallo V (2012) Experience-dependent regulation of NG2 progenitors in the developing barrel cortex. Nat Neurosci 15:1192–1194CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    McKenzie IA, Ohayon D, Li H, Paes de Faria J, Emery B, Tohyama K, Richardson WD (2014) Motor skill learning requires active central myelination. Science 346:318–322CrossRefPubMedGoogle Scholar
  43. 43.
    Micu I, Plemel JR, Caprariello AV, Nave K-A, Stys PK (2017) Axo-myelinic neurotransmission: a novel mode of cell signalling in the central nervous system. Nat Rev Neurosci 19:49–58CrossRefPubMedGoogle Scholar
  44. 44.
    Sampaio-Baptista C, Johansen-Berg H (2017) White matter plasticity in the adult brain. Neuron 96:1239–1251CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Bechler ME, Swire M, ffrench-Constant C (2018) Intrinsic and adaptive myelination-A sequential mechanism for smart wiring in the brain. Dev Neurobiol 78:68–79CrossRefPubMedGoogle Scholar
  46. 46.
    Monje M (2018) Myelin plasticity and nervous system function. Annu Rev Neurosci 41:61–76CrossRefPubMedGoogle Scholar
  47. 47.
    Gibson EM, Purger D, Mount CW, Goldstein AK, Lin GL, Wood LS, Inema I, Miller SE, Bieri G, Zuchero JB, Barres BA, Woo PJ, Vogel H, Monje M (2014) Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 344:1252304–1252304CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Koudelka S, Voas Matthew G, Almeida Rafael G, Baraban M, Soetaert J, Meyer Martin P, Talbot William S, Lyons David A (2016) Individual neuronal subtypes exhibit diversity in CNS myelination mediated by synaptic vesicle release. Curr Biol 26:1447–1455CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Mensch S, Baraban M, Almeida R, Czopka T, Ausborn J, El Manira A, Lyons DA (2015) Synaptic vesicle release regulates myelin sheath number of individual oligodendrocytes in vivo. Nat Neurosci 18:628–630CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Mitew S, Gobius I, Fenlon LR, McDougall SJ, Hawkes D, Xing YL, Bujalka H, Gundlach AL, Richards LJ, Kilpatrick TJ, Merson TD, Emery B (2018) Pharmacogenetic stimulation of neuronal activity increases myelination in an axon-specific manner. Nat Commun 9:306CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Micu I, Plemel JR, Lachance C, Proft J, Jansen AJ, Cummins K, van Minnen J, Stys PK (2016) The molecular physiology of the axo-myelinic synapse. Exp Neurol 276:41–50CrossRefPubMedGoogle Scholar
  52. 52.
    Saab Aiman S, Tzvetavona Iva D, Trevisiol A, Baltan S, Dibaj P, Kusch K, Möbius W, Goetze B, Jahn Hannah M, Huang W, Steffens H, Schomburg Eike D, Pérez-Samartín A, Pérez-Cerdá F, Bakhtiari D, Matute C, Löwel S, Griesinger C, Hirrlinger J, Kirchhoff F, Nave K-A (2016) Oligodendroglial NMDA receptors regulate glucose import and axonal energy metabolism. Neuron 91:119–132CrossRefPubMedGoogle Scholar
  53. 53.
    Jantzie LL, Talos DM, Selip DB, An L, Jackson MC, Folkerth RD, Deng W, Jensen FE (2010) Developmental regulation of group I metabotropic glutamate receptors in the premature brain and their protective role in a rodent model of periventricular leukomalacia. Neuron Glia Biol 6:277–288CrossRefPubMedGoogle Scholar
  54. 54.
    Luyt K, Váradi A, Durant CF, Molnár E (2006) Oligodendroglial metabotropic glutamate receptors are developmentally regulated and involved in the prevention of apoptosis. J Neurochem 99:641–656CrossRefPubMedGoogle Scholar
  55. 55.
    Martinez-Lozada Z, Waggener CT, Kim K, Zou S, Knapp PE, Hayashi Y, Ortega A, Fuss B (2014) Activation of sodium-dependent glutamate transporters regulates the morphological aspects of oligodendrocyte maturation via signaling through CaMKIIβ’s actin binding/stabilizing domain. Glia 62:1543–1558CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Fairman WA, Vandenberg RJ, Arriza JL, Kavanaught MP, Amara SG (1995) An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature 375:599–603CrossRefPubMedGoogle Scholar
  57. 57.
    Pines G, Danbolt NCC, Bjørås M, Zhang Y, Bendahan A, Eide L, Koepsell H, Storm-Mathisen J, Seeberg E, Kanner BIII (1992) Cloning and expression of a rat brain l-glutamate transporter. Nature 360:464–467CrossRefPubMedGoogle Scholar
  58. 58.
    Storck T, Schulte S, Hofmann K, Stoffel W (1992) Structure, expression, and functional analysis of a Na(+)-dependent glutamate/aspartate transporter from rat brain. Proc Natl Acad Sci USA 89:10955–10959CrossRefPubMedGoogle Scholar
  59. 59.
    Conti F, DeBiasi S, Minelli A, Rothstein JD, Melone M (1998) EAAC1, a high-affinity glutamate tranporter, is localized to astrocytes and gabaergic neurons besides pyramidal cells in the rat cerebral cortex. Cereb Cortex 8:108–116CrossRefPubMedGoogle Scholar
  60. 60.
    Domercq M, Matute C (1999) Expression of glutamate transporters in the adult bovine corpus callosum. Brain Res Mol Brain Res 67:296–302CrossRefPubMedGoogle Scholar
  61. 61.
    Domercq M, Sanchez-Gomez MV, Areso P, Matute C (1999) Expression of glutamate transporters in rat optic nerve oligodendrocytes. Eur J Neurosci 11:2226–2236CrossRefPubMedGoogle Scholar
  62. 62.
    Kiryu S, Yao GL, Morita N, Kato H, Kiyama H (1995) Nerve injury enhances rat neuronal glutamate transporter expression: identification by differential display PCR. J Neurosci 15:7872–7878CrossRefPubMedGoogle Scholar
  63. 63.
    Kondo K, Hashimoto H, Kitanaka J, Sawada M, Suzumura A, Marunouchi T, Baba A, Kjtanaka J-I, Sawada M, Suzumura A, Marunouchi T, Babaa A (1995) Expression of glutamate transporters in cultured glial cells. Neurosci Lett 188:140–142CrossRefPubMedGoogle Scholar
  64. 64.
    Gottlieb M, Domercq M, Matute C (2000) Altered expression of the glutamate transporter EAAC 1 in neurons and immature oligodendrocytes after transient forebrain ischemia. J Cereb Blood Flow Metab 20:678–688CrossRefPubMedGoogle Scholar
  65. 65.
    Kugler P, Schmitt A (1999) Glutamate transporter EAAC1 is expressed in neurons and glial cells in the rat nervous system. Glia 27:129–142CrossRefPubMedGoogle Scholar
  66. 66.
    Werner P, Pitt D, Raine CS (2001) Multiple sclerosis: altered glutamate homeostasis in lesions correlates with oligodendrocyte and axonal damage. Ann Neurol 50:169–180CrossRefPubMedGoogle Scholar
  67. 67.
    Arranz AM, Hussein A, Alix JJP, Pérez-Cerdá F, Allcock N, Matute C, Fern R (2008) Functional glutamate transport in rodent optic nerve axons and glia. Glia 56:1353–1367CrossRefPubMedGoogle Scholar
  68. 68.
    Desilva TM, Kabakov AY, Goldhoff PE, Volpe JJ, Rosenberg PA (2009) Regulation of glutamate transport in developing rat oligodendrocytes. J Neurosci 29:7898–7908CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Pitt D, Nagelmeier IE, Wilson HC, Raine CS (2003) Glutamate uptake by oligodendrocytes: implications for excitotoxicity in multiple sclerosis. Neurology 61:1113–1120CrossRefPubMedGoogle Scholar
  70. 70.
    Marques S, Zeisel A, Codeluppi S, van Bruggen D, Mendanha Falcao A, Xiao L, Li H, Haring M, Hochgerner H, Romanov RA, Gyllborg D, Munoz-Manchado AB, La Manno G, Lonnerberg P, Floriddia EM, Rezayee F, Ernfors P, Arenas E, Hjerling-Leffler J, Harkany T, Richardson WD, Linnarsson S, Castelo-Branco G (2016) Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science 352:1326–1329CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR, O’Keeffe S, Phatnani HP, Guarnieri P, Caneda C, Ruderisch N, Deng S, Liddelow SA, Zhang C, Daneman R, Maniatis T, Barres BA, Wu JQ (2014) An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 34:11929–11947CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Regan MR, Huang YH, Kim YS, Dykes-Hoberg MI, Jin L, Watkins AM, Bergles DE, Rothstein JD (2007) Variations in promoter activity reveal a differential expression and physiology of glutamate transporters by glia in the developing and mature CNS. J Neurosci 27:6607–6619CrossRefPubMedGoogle Scholar
  73. 73.
    Vallejo-Illarramendi A, Domercq M, Pérez-Cerdá F, Ravid R, Matute C (2006) Increased expression and function of glutamate transporters in multiple sclerosis. Neurobiol Dis 21:154–164CrossRefPubMedGoogle Scholar
  74. 74.
    Kugler P, Beyer A (2003) Expression of glutamate transporters in human and rat retina and rat optic nerve. Histochem Cell Biol 120:199–212CrossRefPubMedGoogle Scholar
  75. 75.
    Schmitt A, Asan E, Püschel B, Kugler P (1997) Cellular and regional distribution of the glutamate transporter GLAST in the CNS of rats: nonradioactive in situ hybridization and comparative immunocytochemistry. J Neurosci 17:1–10CrossRefPubMedGoogle Scholar
  76. 76.
    Lee A, Anderson AR, Beasley SJ, Barnett NL, Poronnik P, Pow DV (2012) A new splice variant of the glutamate–aspartate transporter: Cloning and immunolocalization of GLAST1c in rat, pig and human brains. J Chem Neuroanat 43:52–63CrossRefPubMedGoogle Scholar
  77. 77.
    Desilva TM, Kinney HC, Borenstein NS, Trachtenberg FL, Irwin N, Volpe JJ, Rosenberg PA (2007) The glutamate transporter EAAT2 is transiently expressed in developing human cerebral white matter. J Comp Neurol 501:879–890CrossRefPubMedGoogle Scholar
  78. 78.
    Barkovich AJ, Kjos BO (1988) Normal postnatal development of the corpus callosum as demonstrated by MR imaging. AJNR Am J Neuroradiol 9:487–491PubMedGoogle Scholar
  79. 79.
    Schmitt A, Asan E, Püschel B, Jöns T, Kugler P (1996) Expression of the glutamate transporter GLT1 in neural cells of the rat central nervous system: non-radioactive in situ hybridization and comparative immunocytochemistry. Neuroscience 71:989–1004CrossRefPubMedGoogle Scholar
  80. 80.
    Schmitt A, Asan E, Lesch K-P, Kugler P (2002) A splice variant of glutamate transporter GLT1/EAAT2 expressed in neurons: cloning and localization in rat nervous system. Neuroscience 109:45–61CrossRefPubMedGoogle Scholar
  81. 81.
    Gebhardt FM, Mitrovic AD, Gilbert DF, Vandenberg RJ, Lynch JW, Dodd PR (2010) Exon-skipping splice variants of excitatory amino acid transporter-2 (EAAT2) form heteromeric complexes with full-length EAAT2. J Biol Chem 285:31313–31324CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Lee A, Pow DV (2010) Astrocytes: glutamate transport and alternate splicing of transporters. Int J Biochem Cell Biol 42:1901–1906CrossRefPubMedGoogle Scholar
  83. 83.
    Münch C, Ebstein M, Seefried U, Zhu B, Stamm S, Landwehrmeyer GB, Ludolph AC, Schwalenstöcker B, Meyer T (2002) Alternative splicing of the 5′-sequences of the mouse EAAT2 glutamate transporter and expression in a transgenic model for amyotrophic lateral sclerosis. J Neurochem 82:594–603CrossRefPubMedGoogle Scholar
  84. 84.
    Williams SM, Sullivan RKP, Scott HL, Finkelstein DI, Colditz PB, Lingwood BE, Dodd PR, Pow DV (2005) Glial glutamate transporter expression patterns in brains from multiple mammalian species. Glia 49:520–541CrossRefPubMedGoogle Scholar
  85. 85.
    Sullivan R, Rauen T, Fischer F, Wießner M, Grewer C, Bicho A, Pow DV (2004) Cloning, transport properties, and differential localization of two splice variants of GLT-1 in the rat CNS: implications for CNS glutamate homeostasis. Glia 45:155–169CrossRefPubMedGoogle Scholar
  86. 86.
    Reynolds R, Herschkowitz N (1986) Selective uptake of neuroactive amino acids by both oligodendrocytes and astrocytes in primary dissociated culture: a possible role for oligodendrocytes in neurotransmitter metabolism. Brain Res 371:253–266CrossRefPubMedGoogle Scholar
  87. 87.
    Schmitt A, Kugler P (1999) Cellular and regional expression of glutamate dehydrogenase in the rat nervous system: non-radioactive in situ hybridization and comparative immunocytochemistry. Neuroscience 92:293–308CrossRefPubMedGoogle Scholar
  88. 88.
    Tansey FA, Farooq M, Cammer W (1991) Glutamine synthetase in oligodendrocytes and astrocytes: new biochemical and immunocytochemical evidence. J Neurochem 56:266–272CrossRefPubMedGoogle Scholar
  89. 89.
    Chen C-J, Ou Y-C, Lin S-Y, Liao S-L, Huang Y-S, Chiang A-N (2006) l-Glutamate activates RhoA GTPase leading to suppression of astrocyte stellation. Eur J Neurosci 23:1977–1987CrossRefPubMedGoogle Scholar
  90. 90.
    Flores-Méndez MA, Martínez-Lozada Z, Monroy HC, Hernández-Kelly LC, Barrera I, Ortega A (2013) Glutamate-dependent translational control in cultured bergmann glia cells: EIF2α phosphorylation. Neurochem Res 38:1324–1332CrossRefPubMedGoogle Scholar
  91. 91.
    López-Colomé AM, Martínez-Lozada Z, Guillem AM, López E, Ortega A (2012) Glutamate transporter-dependent mTOR phosphorylation in Müller glia cells. ASN Neuro 4:AN20120022CrossRefGoogle Scholar
  92. 92.
    Martínez-Lozada Z, Hernández-Kelly LC, Aguilera J, López-Bayghen E, Ortega A (2011) Signaling through EAAT-1/GLAST in cultured Bergmann glia cells. Neurochem Int 59:871–879CrossRefPubMedGoogle Scholar
  93. 93.
    Sluder JAD, Newhouse P, Fain D (2002) Pediatric and adolescent multiple sclerosis. Adolesc Med 13:461–485PubMedGoogle Scholar
  94. 94.
    Criste G, Trapp B, Dutta R (2014) Axonal loss in multiple sclerosis. Handb Clin Neurol 122:101–113CrossRefPubMedGoogle Scholar
  95. 95.
    Rahmanzadeh R, Brück W, Minagar A, Sahraian MA (2018) Multiple sclerosis pathogenesis: missing pieces of an old puzzle. Rev Neurosci.  https://doi.org/10.1515/revneuro-2018-0002 CrossRefPubMedGoogle Scholar
  96. 96.
    Vercellino M, Merola A, Piacentino C, Votta B, Capello E, Mancardi GL, Mutani R, Giordana MT, Cavalla P (2007) Altered glutamate reuptake in relapsing-remitting and secondary progressive multiple sclerosis cortex: correlation with microglia infiltration, demyelination, and neuronal and synaptic damage. J Neuropathol Exp Neurol 66:732–739CrossRefPubMedGoogle Scholar
  97. 97.
    Lucchinetti C, Brück W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47:707–717CrossRefPubMedGoogle Scholar
  98. 98.
    Metz I, Weigand SD, Popescu BFG, Frischer JM, Parisi JE, Guo Y, Lassmann H, Brück W, Lucchinetti CF (2014) Pathologic heterogeneity persists in early active multiple sclerosis lesions. Ann Neurol 75:728–738CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Back SA (2017) White matter injury in the preterm infant: pathology and mechanisms. Acta Neuropathol 134:331–349CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Elitt CM, Rosenberg PA (2014) The challenge of understanding cerebral white matter injury in the premature infant. Neuroscience 276:216–238CrossRefPubMedGoogle Scholar
  101. 101.
    Fern R, Möller T (2000) Rapid ischemic cell death in immature oligodendrocytes: a fatal glutamate release feedback loop. J Neurosci 20:34–42CrossRefPubMedGoogle Scholar
  102. 102.
    Li S, Mealing GA, Morley P, Stys PK (1999) Novel injury mechanism in anoxia and trauma of spinal cord white matter: glutamate release via reverse Na+-dependent glutamate transport. J Neurosci 19:RC16CrossRefPubMedGoogle Scholar
  103. 103.
    Buser JR, Maire J, Riddle A, Gong X, Nguyen T, Nelson K, Luo NL, Ren J, Struve J, Sherman LS, Miller SP, Chau V, Hendson G, Ballabh P, Grafe MR, Back SA (2012) Arrested preoligodendrocyte maturation contributes to myelination failure in premature infants. Ann Neurol 71:93–109CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Bianchi MG, Bardelli D, Chiu M, Bussolati O (2014) Changes in the expression of the glutamate transporter EAAT3/EAAC1 in health and disease. Cell Mol Life Sci 71:2001–2015CrossRefPubMedGoogle Scholar
  105. 105.
    Parkin GM, Udawela M, Gibbons A, Dean B (2018) Glutamate transporters, EAAT1 and EAAT2, are potentially important in the pathophysiology and treatment of schizophrenia and affective disorders. World J Psychiatr 8:51–63CrossRefPubMedGoogle Scholar
  106. 106.
    Matute C, Melone M, Vallejo-Illarramendi A, Conti F (2005) Increased expression of the astrocytic glutamate transporter GLT-1 in the prefrontal cortex of schizophrenics. Glia 49:451–455CrossRefPubMedGoogle Scholar
  107. 107.
    Sheldon AL, Robinson MB (2007) The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochem Int 51:333–355CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    O’Donovan SM, Sullivan CR, McCullumsmith RE (2017) The role of glutamate transporters in the pathophysiology of neuropsychiatric disorders. NPJ Schizophr 3:32CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Poletti S, Radaelli D, Bosia M, Buonocore M, Pirovano A, Lorenzi C, Cavallaro R, Smeraldi E, Benedetti F (2014) Effect of glutamate transporter EAAT2 gene variants and gray matter deficits on working memory in schizophrenia. Eur Psychiatr 29:219–225CrossRefGoogle Scholar
  110. 110.
    Spangaro M, Bosia M, Zanoletti A, Bechi M, Cocchi F, Pirovano A, Lorenzi C, Bramanti P, Benedetti F, Smeraldi E, Cavallaro R (2012) Cognitive dysfunction and glutamate reuptake: Effect of EAAT2 polymorphism in schizophrenia. Neurosci Lett 522:151–155CrossRefPubMedGoogle Scholar
  111. 111.
    Spangaro M, Bosia M, Zanoletti A, Bechi M, Mariachiara B, Pirovano A, Lorenzi C, Bramanti P, Smeraldi E, Cavallaro R (2014) Exploring effects of EAAT polymorphisms on cognitive functions in schizophrenia. Pharmacogenomics 15:925–932CrossRefPubMedGoogle Scholar
  112. 112.
    Takahashi S (2013) Heterogeneity of schizophrenia: Genetic and symptomatic factors. Am J Med Genet B Neuropsychiatr Genet 162:648–652CrossRefGoogle Scholar
  113. 113.
    Cassoli JS, Guest PC, Malchow B, Schmitt A, Falkai P, Martins-de-Souza D (2015) Disturbed macro-connectivity in schizophrenia linked to oligodendrocyte dysfunction: from structural findings to molecules. NPJ Schizophr 1:15034CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Fields RD (2008) White matter in learning, cognition and psychiatric disorders. Trends Neurosci 31:361–370CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Kerns D, Vong GS, Barley K, Dracheva S, Katsel P, Casaccia P, Haroutunian V, Byne W, Peters JJ (2010) Gene expression abnormalities and oligodendrocyte deficits in the internal capsule in schizophrenia. Schizophr Res 120:150–158CrossRefPubMedGoogle Scholar
  116. 116.
    Kolomeets NS, Uranova NA (2018) Reduced oligodendrocyte density in layer 5 of the prefrontal cortex in schizophrenia. Eur Arch Psychiatry Clin Neurosci.  https://doi.org/10.1007/s00406-018-0888-0 CrossRefPubMedGoogle Scholar
  117. 117.
    Kroken RA, Løberg E-M, Drønen T, Grüner R, Hugdahl K, Kompus K, Skrede S, Johnsen E (2014) A critical review of pro-cognitive drug targets in psychosis: convergence on myelination and inflammation. Front Psychiatry 5:11CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Maas DA, Vallès A, Martens GJM (2017) Oxidative stress, prefrontal cortex hypomyelination and cognitive symptoms in schizophrenia. Transl Psychiatry 7:e1171CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Takahashi N, Sakurai T, Davis KL, Buxbaum JD (2011) Linking oligodendrocyte and myelin dysfunction to neurocircuitry abnormalities in schizophrenia. Prog Neurobiol 93:13–24CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Edna Suárez-Pozos
    • 1
  • Elizabeth J. Thomason
    • 1
  • Babette Fuss
    • 1
    Email author
  1. 1.Department of Anatomy and NeurobiologyVirginia Commonwealth University School of MedicineRichmondUSA

Personalised recommendations