Neurochemical Research

, Volume 43, Issue 2, pp 351–362 | Cite as

Eclalbasaponin II Ameliorates the Cognitive Impairment Induced by Cholinergic Blockade in Mice

  • Won Yong Jung
  • Haneul Kim
  • Se Jin Jeon
  • Hye Jin Park
  • Hyuck Jai Choi
  • Nam Jae Kim
  • Dong Hyun Kim
  • Dae Sik JangEmail author
  • Jong Hoon RyuEmail author
Original Paper


Eclalbasaponin II derived from Eclipta prostrata L. (Asteraceae) has been reported to have anti-fibrotic, anti-bacterial and autophagic activities, but its effect on cognitive function has not been investigated. We studied the effect of eclalbasaponin II on cholinergic blockade-induced memory impairment in mice using the passive avoidance, Y-maze, and Morris water maze tasks. Eclalbasaponin II (10 or 20 mg/kg, p.o.) significantly ameliorated the cognitive dysfunction induced by scopolamine in the passive avoidance, Y-maze, and the Morris water maze tasks. To identify the mechanism of the memory-ameliorating effect of eclalbasaponin II, acetylcholinesterase (AChE) activity assay, Western blot analysis and electrophysiology were conducted. Eclalbasaponin II inhibited the AChE activity in ex vivo study, and the administration of eclalbasaponin II and its metabolite, echinocystic acid, increased the phosphorylation levels of memory-related signaling molecules, including protein kinase B (Akt) and glycogen synthase kinase-3β (GSK-3β), in the hippocampus. Although eclalbasaponin II did not affect hippocampal long term potentiation (LTP), echinocystic acid significantly enhanced hippocampal LTP formation (30 μM). These results suggest that eclalbasaponin II ameliorates cholinergic blockade-induced cognitive impairment via AChE inhibition, LTP formation and the activation of Akt-GSK-3β signaling, and that eclalbasaponin II may be a useful to treat cognitive impairment derived from cholinergic dysfunction.


Eclalbasaponin II Learning and memory Long-term potentiation Protein kinase B Glycogen synthase kinase 3β 





Alzheimer’s disease


Protein kinase B


One-way analysis of variance






Evoked field potential responses


Field excitatory post-synaptic potential


Glycogen synthase kinase-3β


High-frequency stimulation




Long-term depression


Long-term potentiation




Paired-pulse ratio


Theta-burst stimulating


Tween 20/tris-buffered saline



This research was supported by the Mid-career Researcher Program through a National Research Foundation of Korea (NRF) grant funded by the Ministry of Education, Science and Technology (MEST) (NRF-2015R1A2A2A01007838) and by the Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science and ICT (NRF-2017R1A5A2014768).

Compliance with Ethical Standards

Conflict of interest

The authors declare that there have no conflicts of interest.


  1. 1.
    Hyman BT, Phelps CH, Beach TG, Bigio EH, Cairns NJ, Carrillo MC, Dickson DW, Duyckaerts C, Frosch MP, Masliah E, Mirra SS, Nelson PT, Schneider JA, Thal DR, Thies B, Trojanowski JQ, Vinters HV, Montine TJ (2012) National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement 8(1):1–13CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Spires-Jones TL, Hyman BT (2014) The intersection of amyloid β and tau at synapses in Alzheimer’s disease. Neuron 82(4):756–771CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bartus RT, Dean RL 3rd, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217(4558):408–414CrossRefPubMedGoogle Scholar
  4. 4.
    Francis PT, Palmer AM, Snape M, Wilcock GK (1999) The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry 66(2):137–147CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Mufson EJ, Counts SE, Perez SE, Ginsberg SD (2008) Cholinergic system during the progression of Alzheimer’s disease: therapeutic implications. Expert Rev Neurother 8(11):1703–1718CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Terry AV Jr, Buccafusco JJ (2003) The cholinergic hypothesis of age and Alzheimer’s disease-related cognitive deficits: recent challenges and their implications for novel drug development. J Pharmacol Exp Ther 306(3):821–827CrossRefPubMedGoogle Scholar
  7. 7.
    Godyn J, Jonczyk J, Panek D, Malawska B (2016) Therapeutic strategies for Alzheimer’s disease in clinical trials. Pharmacol Rep 68(1):127–138CrossRefPubMedGoogle Scholar
  8. 8.
    Rountree SD, Chan W, Pavlik VN, Darby EJ, Siddiqui S, Doody RS (2009) Persistent treatment with cholinesterase inhibitors and/or memantine slows clinical progression of Alzheimer disease. Alzheimers Res Ther 1(2):7CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Perry E, Howes MJ (2011) Medicinal plants and dementia therapy: herbal hopes for brain aging? CNS Neurosci Ther 17(6):683–698CrossRefPubMedGoogle Scholar
  10. 10.
    Scheid V (2009) Chinese herbal medicine : formulas & strategies, 2nd edn. Eastland Press, Seattle, pp 383–384Google Scholar
  11. 11.
    Thakur VD, Mengi SA (2005) Neuropharmacological profile of Eclipta alba (Linn.) Hassk. J Ethnopharmacol 102(1):23–31CrossRefPubMedGoogle Scholar
  12. 12.
    Lee MK, Ha NR, Yang H, Sung SH, Kim GH, Kim YC (2008) Antiproliferative activity of triterpenoids from Eclipta prostrata on hepatic stellate cells. Phytomedicine 15(9):775–780CrossRefPubMedGoogle Scholar
  13. 13.
    Ray A, Bharali P, Konwar BK (2013) Mode of antibacterial activity of Eclalbasaponin isolated from Eclipta alba. Appl Biochem Biotechnol 171(8):2003–2019CrossRefPubMedGoogle Scholar
  14. 14.
    Cho YJ, Woo JH, Lee JS, Jang DS, Lee KT, Choi JH (2016) Eclalbasaponin II induces autophagic and apoptotic cell death in human ovarian cancer cells. J Pharmacol Sci 132(1):6–14CrossRefPubMedGoogle Scholar
  15. 15.
    Kim HY, Kim HM, Ryu B, Lee JS, Choi JH, Jang DS (2015) Constituents of the aerial parts of Eclipta prostrata and their cytotoxicity on human ovarian cancer cells in vitro. Arch Pharm Res 38(11):1963–1969CrossRefPubMedGoogle Scholar
  16. 16.
    Park SJ, Kim DH, Jung JM, Kim JM, Cai M, Liu X, Hong JG, Lee CH, Lee KR, Ryu JH (2012) The ameliorating effects of stigmasterol on scopolamine-induced memory impairments in mice. Eur J Pharmacol 676(1–3):64–70CrossRefPubMedGoogle Scholar
  17. 17.
    Kim DH, Hung TM, Bae KH, Jung JW, Lee S, Yoon BH, Cheong JH, Ko KH, Ryu JH (2006) Gomisin A improves scopolamine-induced memory impairment in mice. Eur J Pharmacol 542(1–3):129–135CrossRefPubMedGoogle Scholar
  18. 18.
    Sarter M, Bodewitz G, Stephens DN (1988) Attenuation of scopolamine-induced impairment of spontaneous alteration behaviour by antagonist but not inverse agonist and agonist β-carbolines. Psychopharmacology 94(4):491–495CrossRefPubMedGoogle Scholar
  19. 19.
    Barnes CA, Danysz W, Parsons CG (1996) Effects of the uncompetitive NMDA receptor antagonist memantine on hippocampal long-term potentiation, short-term exploratory modulation and spatial memory in awake, freely moving rats. Eur J Neurosci 8(3):565–571CrossRefPubMedGoogle Scholar
  20. 20.
    Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11(1):47–60CrossRefPubMedGoogle Scholar
  21. 21.
    Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95CrossRefPubMedGoogle Scholar
  22. 22.
    Kim DH, Kim DY, Kim YC, Jung JW, Lee S, Yoon BH, Cheong JH, Kim YS, Kang SS, Ko KH, Ryu JH (2007) Nodakenin, a coumarin compound, ameliorates scopolamine-induced memory disruption in mice. Life Sci 80(21):1944–1950CrossRefPubMedGoogle Scholar
  23. 23.
    Jung IH, Jang SE, Joh EH, Chung J, Han MJ, Kim DH (2012) Lancemaside A isolated from Codonopsis lanceolata and its metabolite echinocystic acid ameliorate scopolamine-induced memory and learning deficits in mice. Phytomedicine 20(1):84–88CrossRefPubMedGoogle Scholar
  24. 24.
    Park SJ, Lee Y, Oh HK, Lee HE, Ko SY, Kim B, Cheong JH, Shin CY, Ryu JH (2014) Oleanolic acid attenuates MK-801-induced schizophrenia-like behaviors in mice. Neuropharmacology 86:49–56CrossRefPubMedGoogle Scholar
  25. 25.
    Seo JS, Kim TK, Leem YH, Lee KW, Park SK, Baek IS, Kim KS, Im GJ, Lee SM, Park YH, Han PL (2009) SK-PC-B70M confers anti-oxidant activity and reduces Aβ levels in the brain of Tg2576 mice. Brain Res 1261:100–108CrossRefPubMedGoogle Scholar
  26. 26.
    Begou M, Volle J, Bertrand JB, Brun P, Job D, Schweitzer A, Saoud M, D’Amato T, Andrieux A, Suaud-Chagny MF (2008) The stop null mice model for schizophrenia displays cognitive and social deficits partly alleviated by neuroleptics. Neuroscience 157(1):29–39CrossRefPubMedGoogle Scholar
  27. 27.
    Li BS, Ma W, Zhang L, Barker JL, Stenger DA, Pant HC (2001) Activation of phosphatidylinositol-3 kinase (PI-3K) and extracellular regulated kinases (Erk1/2) is involved in muscarinic receptor-mediated DNA synthesis in neural progenitor cells. J Neurosci 21(5):1569–1579PubMedGoogle Scholar
  28. 28.
    Kitagishi Y, Kobayashi M, Kikuta K, Matsuda S (2012) Roles of PI3K/AKT/GSK3/mTOR pathway in cell signaling of mental illnesses. Depress Res Treat 2012:752563Google Scholar
  29. 29.
    Barros DM, Mello e Souza T, de Souza MM, Choi H, DeDavid e Silva T, Lenz G, Medina JH, Izquierdo I (2001) LY294002, an inhibitor of phosphoinositide 3-kinase given into rat hippocampus impairs acquisition, consolidation and retrieval of memory for one-trial step-down inhibitory avoidance. Behav Pharmacol 12(8):629–634CrossRefPubMedGoogle Scholar
  30. 30.
    Mizuno M, Yamada K, Takei N, Tran MH, He J, Nakajima A, Nawa H, Nabeshima T (2003) Phosphatidylinositol 3-kinase: a molecule mediating BDNF-dependent spatial memory formation. Mol Psychiatry 8(2):217–224CrossRefPubMedGoogle Scholar
  31. 31.
    Chen X, Garelick MG, Wang H, Lil V, Athos J, Storm DR (2005) PI3 kinase signaling is required for retrieval and extinction of contextual memory. Nat Neurosci 8(7):925–931CrossRefPubMedGoogle Scholar
  32. 32.
    Lin CH, Yeh SH, Lu KT, Leu TH, Chang WC, Gean PW (2001) A role for the PI-3 kinase signaling pathway in fear conditioning and synaptic plasticity in the amygdala. Neuron 31(5):841–851CrossRefPubMedGoogle Scholar
  33. 33.
    Horwood JM, Dufour F, Laroche S, Davis S (2006) Signalling mechanisms mediated by the phosphoinositide 3-kinase/Akt cascade in synaptic plasticity and memory in the rat. Eur J Neurosci 23(12):3375–3384CrossRefPubMedGoogle Scholar
  34. 34.
    Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378(6559):785–789CrossRefPubMedGoogle Scholar
  35. 35.
    Alvarez G, Munoz-Montano JR, Satrustegui J, Avila J, Bogonez E, Diaz-Nido J (2002) Regulation of tau phosphorylation and protection against β-amyloid-induced neurodegeneration by lithium. Possible implications for Alzheimer’s disease. Bipolar Disord 4(3):153–165CrossRefPubMedGoogle Scholar
  36. 36.
    Bhat RV, Budd Haeberlein SL, Avila J (2004) Glycogen synthase kinase 3: a drug target for CNS therapies. J Neurochem 89(6):1313–1317CrossRefPubMedGoogle Scholar
  37. 37.
    Hooper C, Markevich V, Plattner F, Killick R, Schofield E, Engel T, Hernandez F, Anderton B, Rosenblum K, Bliss T, Cooke SF, Avila J, Lucas JJ, Giese KP, Stephenson J, Lovestone S (2007) Glycogen synthase kinase-3 inhibition is integral to long-term potentiation. Eur J Neurosci 25(1):81–86CrossRefPubMedGoogle Scholar
  38. 38.
    Peineau S, Taghibiglou C, Bradley C, Wong TP, Liu L, Lu J, Lo E, Wu D, Saule E, Bouschet T, Matthews P, Isaac JT, Bortolotto ZA, Wang YT, Collingridge GL (2007) LTP inhibits LTD in the hippocampus via regulation of GSK3β. Neuron 53(5):703–717CrossRefPubMedGoogle Scholar
  39. 39.
    Franke TF (2008) PI3K/Akt: getting it right matters. Oncogene 27(50):6473–6488CrossRefPubMedGoogle Scholar
  40. 40.
    Bliss TV, Collingridge GL, Laroche S (2006) Neuroscience. ZAP and ZIP, a story to forget. Science 313(5790):1058–1059CrossRefPubMedGoogle Scholar
  41. 41.
    Pastalkova E, Serrano P, Pinkhasova D, Wallace E, Fenton AA, Sacktor TC (2006) Storage of spatial information by the maintenance mechanism of LTP. Science 313(5790):1141–1144CrossRefPubMedGoogle Scholar
  42. 42.
    Whitlock JR, Heynen AJ, Shuler MG, Bear MF (2006) Learning induces long-term potentiation in the hippocampus. Science 313(5790):1093–1097CrossRefPubMedGoogle Scholar
  43. 43.
    Ryu S, Shin JS, Jung JY, Cho YW, Kim SJ, Jang DS, Lee KT (2013) Echinocystic acid isolated from Eclipta prostrata suppresses lipopolysaccharide-induced iNOS, TNF-α, and IL-6 expressions via NF-κB inactivation in RAW 264.7 macrophages. Planta Med 79(12):1031–1037CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Won Yong Jung
    • 1
    • 2
  • Haneul Kim
    • 3
  • Se Jin Jeon
    • 3
  • Hye Jin Park
    • 4
  • Hyuck Jai Choi
    • 2
  • Nam Jae Kim
    • 2
  • Dong Hyun Kim
    • 4
    • 5
  • Dae Sik Jang
    • 3
    Email author
  • Jong Hoon Ryu
    • 1
    • 3
    Email author
  1. 1.Department of Oriental Pharmaceutical Science, College of PharmacyKyung Hee UniversitySeoulRepublic of Korea
  2. 2.East-West Medical Research InstituteKyung Hee University Medical CenterSeoulRepublic of Korea
  3. 3.Department of Life and Nanopharmaceutical Sciences, College of PharmacyKyung Hee UniversitySeoulRepublic of Korea
  4. 4.Department of Medicinal Biotechnology, College of Health SciencesDong-A UniversityBusanRepublic of Korea
  5. 5.Institute of Convergence Bio-HealthDong-A UniversityBusanRepublic of Korea

Personalised recommendations