Neurochemical Research

, Volume 44, Issue 3, pp 549–561 | Cite as

The AMPA Receptor Subunit GluA1 is Required for CA1 Hippocampal Long-Term Potentiation but is not Essential for Synaptic Transmission

  • Akira Terashima
  • Young Ho Suh
  • John T. R. IsaacEmail author
Original Paper


AMPA receptors mediate the majority of excitatory glutamatergic transmission in the mammalian brain and are heterotetramers composed of GluA1-4 subunits. Despite genetic studies, the roles of the subunits in synaptic transmission and plasticity remain controversial. To address this issue, we investigated the effects of cell-specific removal of GluA1 in hippocampal CA1 pyramidal neurons using virally-expressed GluA1 shRNA in organotypic slice culture. We show that this shRNA approach produces a rapid, efficient and selective loss of GluA1, and removed > 80% of surface GluA1 from synapses. This loss of GluA1 caused a modest reduction (up to 57%) in synaptic transmission and when applied in neurons from GluA3 knock-out mice, a similar small reduction in transmission occurred. Further, we found that loss of GluA1 caused a redistribution of GluA2 to synapses that may compensate functionally for the absence of GluA1. We found that LTP was absent in neurons lacking GluA1, induced either by pairing or by a theta-burst pairing protocol previously shown to induce LTP in GluA1 knock-out mice. Our findings demonstrate a critical role of GluA1 in CA1 LTP, but no absolute requirement for GluA1 in maintaining synaptic transmission. Further, our results indicate that GluA2 homomers can mediate synaptic transmission and can compensate for loss of GluA1.


LTP AMPA receptor trafficking Synaptic plasticity Glutamate receptor Hippocampus Learning and memory Cognition 



Long-term potentiation


Alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid




Cornu ammonis 1



We are very grateful to Dr Katherine Roche for extensive help, advice and support for this work. We thank Dr Zhengping Jia for providing the GluA3 knock-out mice. Supported by the NINDS Intramural Program.


  1. 1.
    Isaac JT, Ashby MC, McBain CJ (2007) The role of the GluR2 subunit in AMPA receptor function and synaptic plasticity. Neuron 54:859–871CrossRefPubMedGoogle Scholar
  2. 2.
    Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R (2010) Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 62:405–496CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Bredt DS, Nicoll RA (2003) AMPA receptor trafficking at excitatory synapses. Neuron 40:361–379CrossRefPubMedGoogle Scholar
  4. 4.
    Malenka RC, Bear MF (2004) LTP and LTD: an embarrassment of riches. Neuron 44:5–21CrossRefPubMedGoogle Scholar
  5. 5.
    Malinow R, Malenka RC (2002) AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci 25:103–126CrossRefPubMedGoogle Scholar
  6. 6.
    Granger AJ, Shi Y, Lu W, Cerpas M, Nicoll RA (2013) LTP requires a reserve pool of glutamate receptors independent of subunit type. Nature 493:495–500CrossRefPubMedGoogle Scholar
  7. 7.
    Herring BE, Nicoll RA (2016) Long-term potentiation: from CaMKII to AMPA receptor trafficking. Annu Rev Physiol 78:351–365CrossRefPubMedGoogle Scholar
  8. 8.
    Malinow R, Mainen ZF, Hayashi Y (2000) LTP mechanisms: from silence to four-lane traffic. Curr Opin Neurobiol 10:352–357CrossRefPubMedGoogle Scholar
  9. 9.
    Geiger JR, Melcher T, Koh DS, Sakmann B, Seeburg PH, Jonas P, Monyer H (1995) Relative abundance of subunit mRNAs determines gating and Ca2 + permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 15:193–204CrossRefPubMedGoogle Scholar
  10. 10.
    Tsuzuki K, Lambolez B, Rossier J, Ozawa S (2001) Absolute quantification of AMPA receptor subunit mRNAs in single hippocampal neurons. J Neurochem 77:1650–1659CrossRefPubMedGoogle Scholar
  11. 11.
    Herring BE, Shi Y, Suh YH, Zheng CY, Blankenship SM, Roche KW, Nicoll RA (2013) Cornichon proteins determine the subunit composition of synaptic AMPA receptors. Neuron 77:1083–1096CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Rouach N, Byrd K, Petralia RS, Elias GM, Adesnik H, Tomita S, Karimzadegan S, Kealey C, Bredt DS, Nicoll RA (2005) TARP gamma-8 controls hippocampal AMPA receptor number, distribution and synaptic plasticity. Nat Neurosci 8:1525–1533CrossRefPubMedGoogle Scholar
  13. 13.
    Wenthold RJ, Petralia RS, Blahos J, Niedzielski AS (1996) Evidence for multiple AMPA receptor complexes in hippocampal CA1/CA2 neurons. J Neurosci 16:1982–1989CrossRefPubMedGoogle Scholar
  14. 14.
    Andrasfalvy BK, Smith MA, Borchardt T, Sprengel R, Magee JC (2003) Impaired regulation of synaptic strength in hippocampal neurons from GluR1-deficient mice. J Physiol 552:35–45CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Jensen V, Kaiser KM, Borchardt T, Adelmann G, Rozov A, Burnashev N, Brix C, Frotscher M, Andersen P, Hvalby O, Sakmann B, Seeburg PH, Sprengel R (2003) A juvenile form of postsynaptic hippocampal long-term potentiation in mice deficient for the AMPA receptor subunit GluR-A. J Physiol 553:843–856CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Jia Z, Agopyan N, Miu P, Xiong Z, Henderson J, Gerlai R, Taverna FA, Velumian A, MacDonald J, Carlen P, Abramow-Newerly W, Roder J (1996) Enhanced LTP in mice deficient in the AMPA receptor GluR2. Neuron 17:945–956CrossRefPubMedGoogle Scholar
  17. 17.
    Meng Y, Zhang Y, Jia Z (2003) Synaptic transmission and plasticity in the absence of AMPA glutamate receptor GluR2 and GluR3. Neuron 39:163–176CrossRefPubMedGoogle Scholar
  18. 18.
    Sagata N, Iwaki A, Aramaki T, Takao K, Kura S, Tsuzuki T, Kawakami R, Ito I, Kitamura T, Sugiyama H, Miyakawa T, Fukumaki Y (2010) Comprehensive behavioural study of GluR4 knockout mice: implication in cognitive function. Genes Brain Behav 9:899–909CrossRefPubMedGoogle Scholar
  19. 19.
    Zamanillo D, Sprengel R, Hvalby O, Jensen V, Burnashev N, Rozov A, Kaiser KM, Koster HJ, Borchardt T, Worley P, Lubke J, Frotscher M, Kelly PH, Sommer B, Andersen P, Seeburg PH, Sakmann B (1999) Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning. Science 284:1805–1811CrossRefPubMedGoogle Scholar
  20. 20.
    Romberg C, Raffel J, Martin L, Sprengel R, Seeburg PH, Rawlins JN, Bannerman DM, Paulsen O (2009) Induction and expression of GluA1 (GluR-A)-independent LTP in the hippocampus. Eur J Neurosci 29:1141–1152CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Frey MC, Sprengel R, Nevian T (2009) Activity pattern-dependent long-term potentiation in neocortex and hippocampus of GluA1 (GluR-A) subunit-deficient mice. J Neurosci 29:5587–5596CrossRefPubMedGoogle Scholar
  22. 22.
    Hoffman DA, Sprengel R, Sakmann B (2002) Molecular dissection of hippocampal theta-burst pairing potentiation. Proc Natl Acad Sci USA 99:7740–7745CrossRefPubMedGoogle Scholar
  23. 23.
    Phillips KG, Hardingham NR, Fox K (2008) Postsynaptic action potentials are required for nitric-oxide-dependent long-term potentiation in CA1 neurons of adult GluR1 knock-out and wild-type mice. J Neurosci 28:14031–14041CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Lu W, Shi Y, Jackson AC, Bjorgan K, During MJ, Sprengel R, Seeburg PH, Nicoll RA (2009) Subunit composition of synaptic AMPA receptors revealed by a single-cell genetic approach. Neuron 62:254–268CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Suh YH, Terashima A, Petralia RS, Wenthold RJ, Isaac JT, Roche KW, Roche PA (2010) A neuronal role for SNAP-23 in postsynaptic glutamate receptor trafficking. Nat Neurosci 13:338–343CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Carlin RK, Grab DJ, Cohen RS, Siekevitz P (1980) Isolation and characterization of postsynaptic densities from various brain regions: enrichment of different types of postsynaptic densities. J Cell Biol 86:831–845CrossRefPubMedGoogle Scholar
  27. 27.
    Schluter OM, Xu W, Malenka RC (2006) Alternative N-terminal domains of PSD-95 and SAP97 govern activity-dependent regulation of synaptic AMPA receptor function. Neuron 51:99–111CrossRefPubMedGoogle Scholar
  28. 28.
    McAllister AK (2000) Biolistic transfection of neurons. Sci STKE 2000:pl1CrossRefPubMedGoogle Scholar
  29. 29.
    Terashima A, Pelkey KA, Rah JC, Suh YH, Roche KW, Collingridge GL, McBain CJ, Isaac JT (2008) An essential role for PICK1 in NMDA receptor-dependent bidirectional synaptic plasticity. Neuron 57:872–882CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Terashima A, Cotton L, Dev KK, Meyer G, Zaman S, Duprat F, Henley JM, Collingridge GL, Isaac JT (2004) Regulation of synaptic strength and AMPA receptor subunit composition by PICK1. J Neurosci 24:5381–5390CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Boehm J, Kang MG, Johnson RC, Esteban J, Huganir RL, Malinow R (2006) Synaptic incorporation of AMPA receptors during LTP is controlled by a PKC phosphorylation site on GluR1. Neuron 51:213–225CrossRefPubMedGoogle Scholar
  32. 32.
    Lauri SE, Vesikansa A, Segerstrale M, Collingridge GL, Isaac JT, Taira T (2006) Functional maturation of CA1 synapses involves activity-dependent loss of tonic kainate receptor-mediated inhibition of glutamate release. Neuron 50:415–429CrossRefPubMedGoogle Scholar
  33. 33.
    Alvarez VA, Ridenour DA, Sabatini BL (2006) Retraction of synapses and dendritic spines induced by off-target effects of RNA interference. J Neurosci 26:7820–7825CrossRefPubMedGoogle Scholar
  34. 34.
    Monyer H, Seeburg PH, Wisden W (1991) Glutamate-operated channels: developmentally early and mature forms arise by alternative splicing. Neuron 6:799–810CrossRefPubMedGoogle Scholar
  35. 35.
    Swanson GT, Kamboj SK, Cull-Candy SG (1997) Single-channel properties of recombinant AMPA receptors depend on RNA editing, splice variation, and subunit composition. J Neurosci 17:58–69CrossRefPubMedGoogle Scholar
  36. 36.
    Soto D, Coombs ID, Renzi M, Zonouzi M, Farrant M, Cull-Candy SG (2009) Selective regulation of long-form calcium-permeable AMPA receptors by an atypical TARP, gamma-5. Nat Neurosci 12:277–285CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Liu SJ, Cull-Candy SG (2002) Activity-dependent change in AMPA receptor properties in cerebellar stellate cells. J Neurosci 22:3881–3889CrossRefPubMedGoogle Scholar
  38. 38.
    Verdoorn TA, Burnashev N, Monyer H, Seeburg PH, Sakmann B (1991) Structural determinants of ion flow through recombinant glutamate receptor channels. Science 252:1715–1718CrossRefPubMedGoogle Scholar
  39. 39.
    Shi S, Hayashi Y, Esteban JA, Malinow R (2001) Subunit-specific rules governing AMPA receptor trafficking to synapses in hippocampal pyramidal neurons. Cell 105:331–343CrossRefPubMedGoogle Scholar
  40. 40.
    Buchanan KA, Mellor JR (2007) The development of synaptic plasticity induction rules and the requirement for postsynaptic spikes in rat hippocampal CA1 pyramidal neurones. J Physiol 585:429–445CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Marder E (2011) Variability, compensation, and modulation in neurons and circuits. Proc Natl Acad Sci USA 108(Suppl 3):15542–15548CrossRefPubMedGoogle Scholar
  42. 42.
    Hayashi Y, Shi SH, Esteban JA, Piccini A, Poncer JC, Malinow R (2000) Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287:2262–2267CrossRefPubMedGoogle Scholar
  43. 43.
    Shi SH, Hayashi Y, Petralia RS, Zaman SH, Wenthold RJ, Svoboda K, Malinow R (1999) Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. Science 284:1811–1816CrossRefPubMedGoogle Scholar
  44. 44.
    Mack V, Burnashev N, Kaiser KM, Rozov A, Jensen V, Hvalby O, Seeburg PH, Sakmann B, Sprengel R (2001) Conditional restoration of hippocampal synaptic potentiation in Glur-A-deficient mice. Science 292:2501–2504CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media,LLC (outside the USA)  2017

Authors and Affiliations

  1. 1.Developmental Synaptic Plasticity Section, National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaUSA
  2. 2.Receptor Biology Section, National Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaUSA
  3. 3.Department of Aging Brain and Cognitive DisordersHyogo Brain and Heart CenterHimejiJapan
  4. 4.Neuroscience Research Institute, Department of Biomedical SciencesSeoul National University College of MedicineSeoulSouth Korea
  5. 5.Johnson & Johnson Innovation CentreLondonUK

Personalised recommendations