Neurochemical Research

, Volume 43, Issue 1, pp 219–226 | Cite as

Minocycline Directly Enhances the Self-Renewal of Adult Neural Precursor Cells

  • Anri Kuroda
  • Takahiro Fuchigami
  • Satoshi Fuke
  • Natsu Koyama
  • Kazuhiro Ikenaka
  • Seiji HitoshiEmail author
Original Paper


Minocycline not only has antibacterial action but also produces a variety of pharmacological effects. It has drawn considerable attention as a therapeutic agent for symptoms caused by inflammation in many neurological disorders, leading to several clinical trials. Although some of these effects are mediated through its function of suppressing microglial activation, it is not clear whether minocycline acts on other cell types in the adult brain. In this study, we utilized a colony-forming neurosphere assay, in which neural stem cells (NSCs) clonally proliferate to form floating colonies, called neurospheres. We found that minocycline (at therapeutically relevant concentrations in cerebrospinal fluid) enhances the self-renewal capability of NSCs derived from the subependymal zone of adult mouse brain and facilitates their differentiation into oligodendrocytes. Importantly, these effects were independent of a suppression of microglial activation and were specifically observed with minocycline (among tetracycline derivatives). In addition, the size of the NSC population in the adult brain was increased when minocycline was infused into the lateral ventricle by an osmotic minipump in vivo. While precise molecular mechanisms of how minocycline alters the behavior of adult NSCs remain unknown, our data provide a basis for the clinical use of minocycline to treat neurodegenerative and demyelinating diseases.


Neural stem cell Self-renewal Oligodendrocyte Microglia 



We thank K. Ono for O4 antibody, N. Kaneko and K. Sawamoto for discussion, and M. Mori and M. Tomoeda for technical assistance. This work was supported by Grants-in-Aid for Scientific Research (B) (16H04671) and for challenging Exploratory Research (16K14578) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (S. H.).


  1. 1.
    Yong VW, Wells J, Giuliani F, Casha S, Power C, Metz LM (2004) The promise of minocycline in neurology. Lancet Neurol 3:744–751CrossRefGoogle Scholar
  2. 2.
    Garrido-Mesa N, Zarzuelo A, Gálvez J (2013) Minocycline: far beyond an antibiotic. Br J Pharmacol 169:337–352CrossRefGoogle Scholar
  3. 3.
    Sato K (2015) Effects of microglia on neurogenesis. Glia 63:1394–1405CrossRefGoogle Scholar
  4. 4.
    Möller T, Bard F, Bhattacharya A, Biber K, Campbell B, Dale E, Eder C, Gan L, Garden GA, Hughes ZA, Pearse DD, Staal RG, Sayed FA, Wes PD, Boddeke HW (2016) Critical data-based re-evaluation of minocycline as a putative specific microglia inhibitor. Glia 64:1788–1794CrossRefGoogle Scholar
  5. 5.
    Temple S (2001) The development of neural stem cells. Nature 414:112–117CrossRefGoogle Scholar
  6. 6.
    Naruse M, Ishizaki Y, Ikenaka K, Tanaka A, Hitoshi S (2017) Origin of oligodendrocytes in mammalian forebrains: a revised perspective. J Physiol Sci 67:63–70CrossRefGoogle Scholar
  7. 7.
    Seaberg RM, van der Kooy D (2002) Adult rodent neurogenic regions: the ventricular subependyma contains neural stem cells, but the dentate gyrus contains restricted progenitors. J Neurosci 22:1784–1793CrossRefGoogle Scholar
  8. 8.
    Kempermann G, Song H, Gage FH (2015) Neurogenesis in the adult hippocampus. Cold Spring Harb Perspect Biol 7:a018812CrossRefGoogle Scholar
  9. 9.
    Klempin F, Kempermann G (2007) Adult hippocampal neurogenesis and aging. Eur Arch Psychiatry Clin Neurosci 257:271–280CrossRefGoogle Scholar
  10. 10.
    Schoenfeld TJ, Gould E (2012) Stress, stress hormones, and adult neurogenesis. Exp Neurol 233:12–21CrossRefGoogle Scholar
  11. 11.
    Jacobs BL (2002) Adult brain neurogenesis and depression. Brain Behav Immun 16:602–609CrossRefGoogle Scholar
  12. 12.
    Malberg JE (2004) Implications of adult hippocampal neurogenesis in antidepressant action. J Psychiatry Neurosci 29:196–205PubMedPubMedCentralGoogle Scholar
  13. 13.
    Hitoshi S, Maruta N, Higashi M, Kumar A, Kato N, Ikenaka K (2007) Antidepressant drugs reverse the loss of adult neural stem cells following chronic stress. J Neurosci Res 85:3574–3585CrossRefGoogle Scholar
  14. 14.
    Higashi M, Maruta N, Bernstein A, Ikenaka K, Hitoshi S (2008) Mood stabilizing drugs expand the neural stem cell pool in the adult brain through activation of notch signaling. Stem Cells 26:1758–1767CrossRefGoogle Scholar
  15. 15.
    Zheng L-S, Hitoshi S, Kaneko N, Takao K, Miyakawa T, Tanaka Y, Xia H, Kalinke U, Kudo K, Kanba S, Ikenaka K, Sawamoto K (2014) Mechanisms for interferon-α-induced depression and neural stem cell dysfunction. Stem Cell Rep 3:73–84CrossRefGoogle Scholar
  16. 16.
    Zheng L-S, Kaneko N, Sawamoto K (2015) Minocycline treatment ameliorates interferon-alpha-induced neurogenic defects and depression-like behaviors in mice. Front Cell Neurosci 9:5PubMedPubMedCentralGoogle Scholar
  17. 17.
    Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710CrossRefGoogle Scholar
  18. 18.
    Hitoshi S, Alexson T, Tropepe V, Donoviel D, Elia AJ, Nye JS, Conlon RA, Mak TW, Bernstein A, van der Kooy D (2002) Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells. Genes Dev 16:846–858CrossRefGoogle Scholar
  19. 19.
    Hitoshi S, Seaberg RM, Koscik C, Alexson T, Kusunoki S, Kanazawa I, Tsuji S, van der Kooy D (2004) Primitive neural stem cells from the mammalian epiblast differentiate to definitive neural stem cells under the control of Notch signaling. Genes Dev 18:1806–1811CrossRefGoogle Scholar
  20. 20.
    Shi P, Grobe JL, Desland FA, Zhou G, Shen XZ, Shan Z, Liu M, Raizada MK, Sumners C (2014) Direct pro-inflammatory effects of prorenin on microglia. PLoS ONE 9:e92937CrossRefGoogle Scholar
  21. 21.
    Shibata K, Hanai T, Kato T, Ito T, Fujii M (1969) Laboratory and clinical studies on minocycline in the surgical field. Jpn J Antibiot 22:458–462PubMedGoogle Scholar
  22. 22.
    Nakamura Y, Sakakibara S-i, Miyata T, Ogawa M, Shimazaki T, Weiss S, Kageyama R, Okano H (2000) The bHLH gene Hes1 as a repressor of the neuronal commitment of CNS stem cells. J Neurosci 20:283–293CrossRefGoogle Scholar
  23. 23.
    Chojnacki A, Shimazaki T, Gregg C, Weinmaster G, Weiss S (2003) Glycoprotein 130 signaling regulates Notch1 expression and activation in the self-renewal of mammalian forebrain neural stem cells. J Neurosci 23:1730–1741CrossRefGoogle Scholar
  24. 24.
    Hirota Y, Sawada M, Huang SH, Ogino T, Ohata S, Kubo A, Sawamoto K (2016) Roles of Wnt signaling in the neurogenic niche of the adult mouse ventricular-subventricular zone. Neurochem Res 41:222–230CrossRefGoogle Scholar
  25. 25.
    Oshio K, Watanabe H, Song Y, Verkman AS, Manley GT (2005) Reduced cerebrospinal fluid production and intracranial pressure in mice lacking choroid plexus water channel auqporin-1. FASEB J 19:76–78CrossRefGoogle Scholar
  26. 26.
    Yrjänheikki J, Keinänen R, Pellikka M, Hökfelt T, Koistinaho J (1998) Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc Natl Acad Sci USA 95:15769–15774CrossRefGoogle Scholar
  27. 27.
    Du Y, Ma Z, Lin S, Dodel RC, Gao F, Bales KR, Triarhou LC, Chernet E, Perry KW, Nelson DL, Luecke S, Phebus LA, Bymaster FP, Paul SM (2001) Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease. Proc Natl Acad Sci USA 98:14669–14674CrossRefGoogle Scholar
  28. 28.
    Keller AF, Gravel M, Kriz J (2011) Treatment with minocycline after disease onset alters astrocyte reactivity and increases microgliosis in SOD1 mutant mice. Exp Neurol 228:69–79CrossRefGoogle Scholar
  29. 29.
    Barza M, Brown RB, Shanks C, Gamble C, Weinstein L (1975) Relation between lipophilicity and pharmacological behavior of minocycline, doxycycline, tetracycline, and oxytetracycline in dogs. Antimicrob Agents Chemother 8:713–720CrossRefGoogle Scholar
  30. 30.
    Naruse M, Ishino Y, Kumar A, Ono K, Takebayashi H, Yamaguchi M, Ishizaki Y, Ikenaka K, Hitoshi S (2016) The dorsoventral boundary of the germinal zone is a specialized niche for the generation of cortical oligodendrocytes during a restricted temporal window. Cereb Cortex 26:2800–2810CrossRefGoogle Scholar
  31. 31.
    Martens DJ, Tropepe V, van der Kooy D (2000) Separate proliferation kinetics of fibroblast growth factor-responsive and epidermal growth factor-responsive neural stem cells within the embryonic forebrain germinal zone. J Neurosci 20:1085–1095CrossRefGoogle Scholar
  32. 32.
    Morshead CM, Reynolds BA, Craig CG, McBurney MW, Staines WA, Morassutti D, Weiss S, van der Kooy D (1994) Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron 13:1071–1082CrossRefGoogle Scholar
  33. 33.
    Sanosaka T, Imamura T, Hamazaki N, Chai M, Igarashi K, Ideta-Otsuka M, Miura F, Ito T, Fujii N, Ikeo K, Nakashima K (2017) DNA methylome analysis identifies transcription factor-based epigenomic signatures of multilineage competence in neural stem/progenitor cells. Cell Rep 20:2992–3003CrossRefGoogle Scholar
  34. 34.
    Sakata H, Niizuma K, Yoshioka H, Kim GS, Jung JE, Katsu M, Narasimhan P, Maier CM, Nishiyama Y, Chan PH (2012) Minocycline-preconditioned neural stem cells enhance neuroprotection after ischemic stroke in rats. J Neurosci 32:3462–3473CrossRefGoogle Scholar
  35. 35.
    Rueger MA, Muesken S, Walberer M, Jantzen SU, Schnakenburg K, Backes H, Graf R, Neumaier B, Hoehn M, Fink GR, Schroeter M (2012) Effects of minocycline on endogenous neural stem cells after experimental stroke. Neuroscience 215:174–183CrossRefGoogle Scholar
  36. 36.
    Liu X, Su H, Chu TH, Guo A, Wu W (2013) Minocycline inhibited the pro-apoptotic effect of microglia on neural progenitor cells and protected their neuronal differentiation in vitro. Neurosci Lett 542:30–36CrossRefGoogle Scholar
  37. 37.
    Agwuh KN, MacGowan A (2006) Pharmacokinetics and pharmacodynamics of the tetracyclines including glycylcyclines. J Antimicrob Chemother 58:256–265CrossRefGoogle Scholar
  38. 38.
    Zhang Q, Wu HH, Wang Y, Gu GJ, Zhang W, Xia R (2016) Neural stem cell transplantation decreases neuroinflammation in a transgenic mouse model of Alzheimer’s disease. J Neurochem 136:815–825CrossRefGoogle Scholar
  39. 39.
    Brundula V, Rewcastle NB, Metz LM, Bernard CC, Yong VW (2002) Targeting leukocyte MMPs and transmigration: minocycline as a potential therapy for multiple sclerosis. Brain 125:1297–1308CrossRefGoogle Scholar
  40. 40.
    Popovic N, Schubart A, Goetz BD, Zhang SC, Linington C, Duncan ID (2002) Inhibition of autoimmune encephalomyelitis by a tetracycline. Ann Neurol 51:215–223CrossRefGoogle Scholar
  41. 41.
    Rasmussen S, Imitola J, Ayuso-Sacido A, Wang Y, Starossom SC, Kivisäkk P, Zhu B, Meyer M, Bronson RT, Garcia-Verdugo JM, Khoury SJ (2011) Reversible neural stem cell niche dysfunction in a model of multiple sclerosis. Ann Neurol 69:878–891CrossRefGoogle Scholar
  42. 42.
    Metz LM, Li DKB, Traboulsee AL, Duquette P, Eliasziw M, Cerchiaro G, Greenfield J, Riddehough A, Yeung M, Kremenchutzky M, Vorobeychik G, Freedman MS, Bhan V, Blevins G, Marriott JJ, Grand’Maison F, Lee L, Thibault M, Hill MD, Yong VW; Minocycline in MS Study Team (2017) Trial of minocycline in a clinically isolated syndrome of multiple sclerosis. N Engl J Med 376:2122–2133CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Integrative PhysiologyShiga University of Medical ScienceOtsuJapan
  2. 2.Division of Neurobiology and BioinformaticsNational Institute for Physiological SciencesOkazakiJapan
  3. 3.Department of Physiological Sciences, School of Life SciencesThe Graduate University for Advanced StudiesOkazakiJapan

Personalised recommendations