Neurochemical Research

, Volume 43, Issue 1, pp 212–218 | Cite as

Lewis X-Carrying Neoglycolipids Evoke Selective Apoptosis in Neural Stem Cells

  • Hirokazu Yagi
  • Gengwei Yan
  • Tatsuya Suzuki
  • Shingo Tsuge
  • Takumi Yamaguchi
  • Koichi Kato
Original Paper


N-glycans carrying the Lewis X trisaccharide [Galβ1-4 (Fucα1-3) GlcNAc] are expressed by neural stem cells (NSCs) exclusively before differentiation, and they actively contribute to the maintenance of stemness of these cells. To address the functional roles of the Lewis X-mediated molecular interactions in NSCs, we created a series of synthetic neoglycolipids that contained a Lewis X-carrying glycan connected to an acyl chain through an amide bond. The neoglycolipids formed aqueous micelles displaying functional Lewis X glycotopes. Surprisingly, the neoglycolipid micelles evoked selective apoptosis in undifferentiated NSCs, whereas their differentiated cells remained unaffected. The apoptotic activity depended on the structural integrity of the Lewis X glycotopes and also on the length of the acyl chain, with an optimum length of C18. We propose hypothetical functional mechanisms of the neoglycolipid, which involves selective NSC targeting with Lewis X glycan and apoptotic signaling by the intracellular release of fatty acids. This serendipitous finding may offer a new strategy for controlling neural cell fates using artificial glycoclusters.


Neural stem cell Lewis X Neoglycolipid Apoptosis 



This study was supported by Grants-in-Aid for Scientific Research (C) (JP15K07935 to H.Y.), Challenging Exploratory Research (JP26560451 to K.K.), and Scientific Research on Innovative Areas (JP26110716 and JP17H06414 to H.Y. and JP25102008 to K.K.) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, the Japan Agency for Medical Research and Development (to H.Y.) and Grant for Basic Science Research Projects from The Sumitomo Foundation (to T.Y.).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11064_2017_2415_MOESM1_ESM.pptx (139 kb)
Supplementary material 1 (PPTX 139 KB)
11064_2017_2415_MOESM2_ESM.docx (20 kb)
Supplementary material 2 (DOCX 21 KB)


  1. 1.
    Temple S (1989) Division and differentiation of isolated CNS blast cells in microculture. Nature 340(6233):471–473. doi: 10.1038/340471a0 CrossRefPubMedGoogle Scholar
  2. 2.
    McKay R (1997) Stem cells in the central nervous system. Science (New York) 276(5309):66–71. doi: 10.1126/science.276.5309.66 CrossRefGoogle Scholar
  3. 3.
    Gage FH (2000) Mammalian neural stem cells. Science (New York) 287(5457):1433–1438. doi: 10.1126/science.287.5457.1433 CrossRefGoogle Scholar
  4. 4.
    Doetsch F, Caille I, Lim DA, Garcia-Verdugo JM, Alvarez-Buylla A (1999) Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97(6):703–716. doi: 10.1016/S0092-8674(00)80783-7 CrossRefPubMedGoogle Scholar
  5. 5.
    Seri B, Garcia-Verdugo JM, McEwen BS, Alvarez-Buylla A (2001) Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci 21(18):7153–7160PubMedGoogle Scholar
  6. 6.
    Temple S, Alvarez-Buylla A (1999) Stem cells in the adult mammalian central nervous system. Curr Opin Neurobiol 9(1):135–141. doi: 10.1038/cr.2009.56 CrossRefPubMedGoogle Scholar
  7. 7.
    Kojima N, Fenderson BA, Stroud MR, Goldberg RI, Habermann R, Toyokuni T, Hakomori S (1994) Further studies on cell adhesion based on Le(x)-Le(x) interaction, with new approaches: embryoglycan aggregation of F9 teratocarcinoma cells, and adhesion of various tumour cells based on Le(x) expression. Glycoconj J 11(3):238–248CrossRefPubMedGoogle Scholar
  8. 8.
    Kleene R, Schachner M (2004) Glycans and neural cell interactions. Nat Rev Neurosci 5(3):195–208. doi: 10.1038/nrn1349 CrossRefPubMedGoogle Scholar
  9. 9.
    Hashimoto H, Ishino Y, Jiang W, Yoshimura T, Takeda-Uchimura Y, Uchimura K, Kadomatsu K, Ikenaka K (2016) Keratan sulfate regulates the switch from motor neuron to oligodendrocyte generation during development of the mouse spinal cord. Neurochem Res 41(1–2):450–462. doi: 10.1007/s11064-016-1861-9 CrossRefPubMedGoogle Scholar
  10. 10.
    Yagi H, Kato K (2016) Functional roles of glycoconjugates in the maintenance of stemness and differentiation process of neural stem cells. Glycoconj J. doi: 10.1007/s10719-016-9707-x Google Scholar
  11. 11.
    Yagi H, Yanagisawa M, Suzuki Y, Nakatani Y, Ariga T, Kato K, Yu RK (2010) HNK-1 epitope-carrying tenascin-C spliced variant regulates the proliferation of mouse embryonic neural stem cells. J Biol Chem 285(48):37293–37301. doi: 10.1074/jbc.M110.157081 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Yagi H, Saito T, Yanagisawa M, Yu RK, Kato K (2012) Lewis X-carrying N-glycans regulate the proliferation of mouse embryonic neural stem cells via the Notch signaling pathway. J Biol Chem 287(29):24356–24364. doi: 10.1074/jbc.M112.365643 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hennen E, Safina D, Haussmann U, Worsdorfer P, Edenhofer F, Poetsch A, Faissner A (2013) A LewisX glycoprotein screen identifies the low density lipoprotein receptor-related protein 1 (LRP1) as a modulator of oligodendrogenesis in mice. J Biol Chem 288(23):16538–16545. doi: 10.1074/jbc.M112.419812 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Yagi H, Yanagisawa M, Kato K, Yu RK (2010) Lysosome-associated membrane protein 1 is a major SSEA-1-carrier protein in mouse neural stem cells. Glycobiology 20(8):976–981. doi: 10.1093/glycob/cwq054 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Eggens I, Fenderson B, Toyokuni T, Dean B, Stroud M, Hakomori S (1989) Specific interaction between Lex and Lex determinants. A possible basis for cell recognition in preimplantation embryos and in embryonal carcinoma cells. J Biol Chem 264(16):9476–9484PubMedGoogle Scholar
  16. 16.
    Kunze A, Bally M, Hook F, Larson G (2013) Equilibrium-fluctuation-analysis of single liposome binding events reveals how cholesterol and Ca2+ modulate glycosphingolipid trans-interactions. Sci Rep 3:1452. doi: 10.1038/srep01452 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Yan G, Yamaguchi T, Suzuki T, Yanaka S, Sato S, Fujita M, Kato K (2017) Hyper-assembly of self-assembled glycoclusters mediated by specific carbohydrate-carbohydrate interactions. Chem Asian J 12(9):968–972. doi: 10.1002/asia.201700202 CrossRefPubMedGoogle Scholar
  18. 18.
    Hernaiz MJ, de la Fuente JM, Barrientos AG, Penades S (2002) A model system mimicking glycosphingolipid clusters to quantify carbohydrate self-interactions by surface plasmon resonance. Angew Chem Int Ed Engl 41(9):1554–1557. doi: 10.1002/1521-3773(20020503) CrossRefPubMedGoogle Scholar
  19. 19.
    Coombs PJ, Graham SA, Drickamer K, Taylor ME (2005) Selective binding of the scavenger receptor C-type lectin to Lewisx trisaccharide and related glycan ligands. J Biol Chem 280(24):22993–22999. doi: 10.1074/jbc.M504197200 CrossRefPubMedGoogle Scholar
  20. 20.
    Yu YH, Narayanan G, Sankaran S, Ramasamy S, Chan SY, Lin S, Chen J, Yang H, Srivats H, Ahmed S (2016) Purification, visualization, and molecular signature of neural stem cells. Stem Cells Dev 25(2):189–201. doi: 10.1089/scd.2015.0190 CrossRefPubMedGoogle Scholar
  21. 21.
    Fuki IV, Iozzo RV, Williams KJ (2000) Perlecan heparan sulfate proteoglycan: a novel receptor that mediates a distinct pathway for ligand catabolism. J Biol Chem 275(33):25742–25750. doi: 10.1074/jbc.M909173199 CrossRefPubMedGoogle Scholar
  22. 22.
    Kerever A, Mercier F, Nonaka R, de Vega S, Oda Y, Zalc B, Okada Y, Hattori N, Yamada Y, Arikawa-Hirasawa E (2014) Perlecan is required for FGF-2 signaling in the neural stem cell niche. Stem Cell Res 12(2):492–505. doi: 10.1016/j.scr.2013.12.009 CrossRefPubMedGoogle Scholar
  23. 23.
    Mishra R, Simonson MS (2005) Saturated free fatty acids and apoptosis in microvascular mesangial cells: palmitate activates pro-apoptotic signaling involving caspase 9 and mitochondrial release of endonuclease G. Cardiovasc Diabetol 4:2. doi: 10.1186/1475-2840-4-2 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Listenberger LL, Ory DS, Schaffer JE (2001) Palmitate-induced apoptosis can occur through a ceramide-independent pathway. J Biol Chem 276(18):14890–14895. doi: 10.1074/jbc.M010286200 CrossRefPubMedGoogle Scholar
  25. 25.
    Martins de Lima T, Cury-Boaventura MF, Giannocco G, Nunes MT, Curi R (2006) Comparative toxicity of fatty acids on a macrophage cell line (J774). Clin Sci (Lond) 111(5):307–317. doi: 10.1042/CS20060064 CrossRefGoogle Scholar
  26. 26.
    Andrade LN, de Lima TM, Curi R, Castrucci AM (2005) Toxicity of fatty acids on murine and human melanoma cell lines. Toxicol In Vitro 19(4):553–560. doi: 10.1016/j.tiv.2005.02.002 CrossRefPubMedGoogle Scholar
  27. 27.
    Lima TM, Kanunfre CC, Pompeia C, Verlengia R, Curi R (2002) Ranking the toxicity of fatty acids on Jurkat and Raji cells by flow cytometric analysis. Toxicol In Vitro 16(6):741–747. doi: 10.1016/S0887-2333(02)00095-4 CrossRefPubMedGoogle Scholar
  28. 28.
    Artwohl M, Lindenmair A, Roden M, Waldhausl WK, Freudenthaler A, Klosner G, Ilhan A, Luger A, Baumgartner-Parzer SM (2009) Fatty acids induce apoptosis in human smooth muscle cells depending on chain length, saturation, and duration of exposure. Atherosclerosis 202(2):351–362. doi: 10.1016/j.atherosclerosis.2008.05.030 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Graduate School of Pharmaceutical SciencesNagoya City UniversityNagoyaJapan
  2. 2.Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural SciencesOkazakiJapan
  3. 3.School of Physical ScienceSOKENDAI (The Graduate University for Advanced Studies)OkazakiJapan
  4. 4.School of Materials ScienceJapan Advanced Institute of Science and TechnologyNomiJapan

Personalised recommendations