Skip to main content

Advertisement

Log in

Betaine in the Brain: Characterization of Betaine Uptake, its Influence on Other Osmolytes and its Potential Role in Neuroprotection from Osmotic Stress

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Betaine (N-trimethylglycine), a common osmolyte, has received attention because of the number of clinical reports associating betaine supplementation with improved cognition, neuroprotection and exercise physiology. However, tissue analyses report little accumulation of betaine in brain tissue despite the presence of betaine/GABA transporters (BGT1) at the blood brain barrier and in nervous tissue, calling into question whether betaine influences neuronal function directly or indirectly. Therefore, the focus of this study was to determine what capacity nervous tissue has to accumulate betaine, specifically in the hippocampus, a region of the brain associated with learning and memory and one that is particularly susceptible to damage (e.g., seizure activity). Here we report that hippocampal slices actively accumulate betaine in a time, dose and osmolality dependent manner, resulting in peak intracellular concentrations four times extracellular concentrations within 8 h. Our data also indicate that betaine uptake differentially influences the accumulation of other osmolytes. Under isosmotic conditions, betaine uptake minimally impacted some osmolytes (e.g., glycerylphosphorylcholine and glutamate) while significantly reducing others (taurine, creatine, and myo-inositol). Under osmotic stress (hyperosmotic) conditions, we observed dramatic changes in osmolytes like glycine and glutamine—key players in inhibitory neurotransmission—and little change in osmolytes such as taurine, creatine and myo-inositol when betaine was available. These data suggest that betaine may influence pathways of inhibitory neurotransmitter production/recycling in addition to serving as an osmolyte and metabolic intermediate. In sum, our data provide detailed characterization of betaine uptake in the hippocampus that implicates betaine in the modulation of hippocampal neurophysiology and neuroprotection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830

    Article  CAS  PubMed  Google Scholar 

  2. Craig SA (2004) Betaine in human nutrition. Am J Clin Nutr 80:539–549

    CAS  PubMed  Google Scholar 

  3. Ross AB, Zangger A, Guiraud SP (2014) Cereal foods are the major source of betaine in the Western diet–analysis of betaine and free choline in cereal foods and updated assessments of betaine intake. Food Chem 145:859–865

    Article  CAS  PubMed  Google Scholar 

  4. Lever M, Slow S (2010) The clinical significance of betaine, an osmolyte with a key role in methyl group metabolism. Clin Biochem 43:732–744

    Article  CAS  PubMed  Google Scholar 

  5. Chen L, Chen YM, Wang LJ, Wei J, Tan YZ, Zhou JY, Yang Y, Chen YM, Ling WH, Zhu HL (2013) Higher homocysteine and lower betaine increase the risk of microangiopathy in patients with diabetes mellitus carrying the GG genotype of PEMT G774C. Diabetes Metab Res Rev 29:607–617

    Article  CAS  PubMed  Google Scholar 

  6. da Costa KA, Niculescu MD, Craciunescu CN, Fischer LM, Zeisel SH (2006) Choline deficiency increases lymphocyte apoptosis and DNA damage in humans. Am J Clin Nutr 84:88–94

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Lever M, McEntyre CJ, George PM, Slow S, Elmslie JL, Lunt H, Chambers ST, Parry-Strong A, Krebs JD (2014) Extreme urinary betaine losses in type 2 diabetes combined with bezafibrate treatment are associated with losses of dimethylglycine and choline but not with increased losses of other osmolytes. Cardiovasc Drugs Ther 28:459–468

    Article  CAS  PubMed  Google Scholar 

  8. Oulhaj A, Refsum H, Beaumont H, Williams J, King E, Jacoby R, Smith AD (2010) Homocysteine as a predictor of cognitive decline in Alzheimer’s disease. Int J Geriatr Psychiatry 25:82–90

    PubMed  Google Scholar 

  9. Schartum-Hansen H, Ueland PM, Pedersen ER, Meyer K, Ebbing M, Bleie O, Svingen GF, Seifert R, Vikse BE, Nygard O (2013) Assessment of urinary betaine as a marker of diabetes mellitus in cardiovascular patients. PLoS ONE 8:e69454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Suszynska J, Tisonczyk J, Lee HG, Smith MA, Jakubowski H (2010) Reduced homocysteine-thiolactonase activity in Alzheimer’s disease. J Alzheimers Dis 19:1177–1183

    Article  CAS  PubMed  Google Scholar 

  11. Zabrodina VV, Shreder OV, Shreder ED, Durnev AD (2016) Effect of afobazole and betaine on cognitive disorders in the offspring of rats with streptozotocin-induced diabetes and their relationship with DNA damage. Bull Exp Biol Med 161:359–366

    Article  CAS  PubMed  Google Scholar 

  12. Chai GS, Jiang X, Ni ZF, Ma ZW, Xie AJ, Cheng XS, Wang Q, Wang JZ, Liu GP (2013) Betaine attenuates Alzheimer-like pathological changes and memory deficits induced by homocysteine. J Neurochem 124:388–396

    Article  CAS  PubMed  Google Scholar 

  13. Eussen SJ, Ueland PM, Clarke R, Blom HJ, Hoefnagels WH, van Staveren WA, de Groot LC (2007) The association of betaine, homocysteine and related metabolites with cognitive function in Dutch elderly people. Br J Nutr 98:960–968

    Article  CAS  PubMed  Google Scholar 

  14. Im AR, Kim YH, Uddin MR, Chae S, Lee HW, Kim YH, Kim YS, Lee MY (2013) Betaine protects against rotenone-induced neurotoxicity in PC12 cells. Cell Mol Neurobiol 33:625–635

    Article  CAS  PubMed  Google Scholar 

  15. Rabinowitch IM (1936) Effects of betaine upon the cholesterol and bilirubin contents of blood plasma in diabetes mellitus. Can Med Assoc J 34:637–641

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Schousboe A, Larsson OM, Sarup A, White HS (2004) Role of the betaine/GABA transporter (BGT-1/GAT2) for the control of epilepsy. Eur J Pharmacol 500:281–287

    Article  CAS  PubMed  Google Scholar 

  17. Zabrodina VV, Shreder ED, Shreder OV, Durnev AD, Seredenin SB (2015) Effect of afobazole and betaine on dna damage in placental and embryonic tissues of rats with experimental streptozocin diabetes. Bull Exp Biol Med 159:757–760

    Article  CAS  PubMed  Google Scholar 

  18. Armstrong LE, Casa DJ, Roti MW, Lee EC, Craig SA, Sutherland JW, Fiala KA, Maresh CM (2008) Influence of betaine consumption on strenuous running and sprinting in a hot environment. J Strength Cond Res 22:851–860

    Article  PubMed  Google Scholar 

  19. Cholewa JM, Wyszczelska-Rokiel M, Glowacki R, Jakubowski H, Matthews T, Wood R, Craig SA, Paolone V (2013) Effects of betaine on body composition, performance, and homocysteine thiolactone. J Int Soc Sports Nutr 10:39

    Article  PubMed  PubMed Central  Google Scholar 

  20. Craig SS, Craig SA, Ganio MS, Maresh CM, Horrace G, da Costa KA, Zeisel SH (2010) The betaine content of sweat from adolescent females. J Int Soc Sports Nutr 7:3

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hoffman JR, Ratamess NA, Kang J, Gonzalez AM, Beller NA, Craig SA (2011) Effect of 15 days of betaine ingestion on concentric and eccentric force outputs during isokinetic exercise. J Strength Cond Res 25:2235–2241

    Article  PubMed  Google Scholar 

  22. Pryor JL, Craig SA, Swensen T (2012) Effect of betaine supplementation on cycling sprint performance. J Int Soc Sports Nutr 9:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Trepanowski JF, Farney TM, McCarthy CG, Schilling BK, Craig SA, Bloomer RJ (2011) The effects of chronic betaine supplementation on exercise performance, skeletal muscle oxygen saturation and associated biochemical parameters in resistance trained men. J Strength Cond Res 25:3461–3471

    Article  PubMed  Google Scholar 

  24. Warber JP, Patton JF, Tharion WJ, Zeisel SH, Mello RP, Kemnitz CP, Lieberman HR (2000) The effects of choline supplementation on physical performance. Int J Sport Nutr Exerc Metab 10:170–181

    Article  CAS  PubMed  Google Scholar 

  25. Apicella JM, Lee EC, Bailey BL, Saenz C, Anderson JM, Craig SA, Kraemer WJ, Volek JS, Maresh CM (2013) Betaine supplementation enhances anabolic endocrine and Akt signaling in response to acute bouts of exercise. Eur J Appl Physiol 113:793–802

    Article  CAS  PubMed  Google Scholar 

  26. Allen PJ (2012) Creatine metabolism and psychiatric disorders: Does creatine supplementation have therapeutic value? Neurosci Biobehav Rev 36:1442–1462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bjelland I, Tell GS, Vollset SE, Konstantinova S, Ueland PM (2009) Choline in anxiety and depression: the Hordaland Health Study. Am J Clin Nutr 90:1056–1060

    Article  CAS  PubMed  Google Scholar 

  28. Zeisel SH (2009) Importance of methyl donors during reproduction. Am J Clin Nutr 89:673S–677S

    Google Scholar 

  29. Atkinson W, Slow S, Elmslie J, Lever M, Chambers ST, George PM (2009) Dietary and supplementary betaine: effects on betaine and homocysteine concentrations in males. Nutr Metab Cardiovasc Dis 19:767–773

    Article  CAS  PubMed  Google Scholar 

  30. Schwab U, Torronen A, Meririnne E, Saarinen M, Alfthan G, Aro A, Uusitupa M (2006) Orally administered betaine has an acute and dose-dependent effect on serum betaine and plasma homocysteine concentrations in healthy humans. J Nutr 136:34–38

    CAS  PubMed  Google Scholar 

  31. Schwahn BC, Hafner D, Hohlfeld T, Balkenhol N, Laryea MD, Wendel U (2003) Pharmacokinetics of oral betaine in healthy subjects and patients with homocystinuria. Br J Clin Pharmacol 55:6–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Matthews A, Johnson TN, Rostami-Hodjegan A, Chakrapani A, Wraith JE, Moat SJ, Bonham JR, Tucker GT (2002) An indirect response model of homocysteine suppression by betaine: optimising the dosage regimen of betaine in homocystinuria. Br J Clin Pharmacol 54:140–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sakura N, Ono H, Nomura S, Ueda H, Fujita N (1998) Betaine dose and treatment intervals in therapy for homocystinuria due to 5,10-methylenetetrahydrofolate reductase deficiency. J Inherit Metab Dis 21:84–85

    Article  CAS  PubMed  Google Scholar 

  34. Awwad HM, Kirsch SH, Geisel J, Obeid R (2014) Measurement of concentrations of whole blood levels of choline, betaine, and dimethylglycine and their relations to plasma levels. J Chromatogr B Analyt Technol Biomed Life Sci 957:41–45

    Article  CAS  PubMed  Google Scholar 

  35. Slow S, Lever M, Chambers ST, George PM (2009) Plasma dependent and independent accumulation of betaine in male and female rat tissues. Physiol Res 58:403–410

    CAS  PubMed  Google Scholar 

  36. Kempson SA, Zhou Y, Danbolt NC (2014) The betaine/GABA transporter and betaine: roles in brain, kidney, and liver. Front Physiol 5:159

    Article  PubMed  PubMed Central  Google Scholar 

  37. Petty CN, Lucero MT (1999) Characterization of a Na+-dependent betaine transporter with Cl channel properties in squid motor neurons. J Neurophysiol 81:1567–1574

    CAS  PubMed  Google Scholar 

  38. Bitoun M, Tappaz M (2000) Gene expression of taurine transporter and taurine biosynthetic enzymes in brain of rats with acute or chronic hyperosmotic plasma. A comparative study with gene expression of myo-inositol transporter, betaine transporter and sorbitol biosynthetic enzyme. Brain Res Mol Brain Res 77:10–18

    Article  CAS  PubMed  Google Scholar 

  39. Zhu XM, Ong WY (2004) A light and electron microscopic study of betaine/GABA transporter distribution in the monkey cerebral neocortex and hippocampus. J Neurocytol 33:233–240

    Article  CAS  PubMed  Google Scholar 

  40. Takanaga H, Ohtsuki S, Hosoya K, Terasaki T (2001) GAT2/BGT-1 as a system responsible for the transport of gamma-aminobutyric acid at the mouse blood-brain barrier. J Cereb Blood Flow Metab 21:1232–1239

    Article  CAS  PubMed  Google Scholar 

  41. Zeisel SH (2000) Choline: needed for normal development of memory. J Am Coll Nutr 19:528S–531S

    Article  PubMed  Google Scholar 

  42. Kunisawa K, Kido K, Nakashima N, Matsukura T, Nabeshima T, Hiramatsu M (2017) Betaine attenuates memory impairment after water-immersion restraint stress and is regulated by the GABAergic neuronal system in the hippocampus. Eur J Pharmacol 796:122–130

    Article  CAS  PubMed  Google Scholar 

  43. Miwa M, Tsuboi M, Noguchi Y, Enokishima A, Nabeshima T, Hiramatsu M (2011) Effects of betaine on lipopolysaccharide-induced memory impairment in mice and the involvement of GABA transporter 2. J Neuroinflammation 8:153

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Zeisel SH, Niculescu MD (2006) Perinatal choline influences brain structure and function. Nutr Rev 64:197–203

    Article  PubMed  PubMed Central  Google Scholar 

  45. Rowley NM, Smith MD, Lamb JG, Schousboe A, White HS (2011) Hippocampal betaine/GABA transporter mRNA expression is not regulated by inflammation or dehydration post-status epilepticus. J Neurochem 117:82–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lien YH, Shapiro JI, Chan L (1990) Effects of hypernatremia on organic brain osmoles. J Clin Invest 85:1427–1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Trachtman H, Futterweit S, Tonidandel W, Gullans SR (1993) The role of organic osmolytes in the cerebral cell volume regulatory response to acute and chronic renal failure. J Am Soc Nephrol 3:1913–1919

    CAS  PubMed  Google Scholar 

  48. Patel LS, Wenzel HJ, Schwartzkroin PA (2004) Physiological and morphological characterization of dentate granule cells in the p35 knock-out mouse hippocampus: evidence for an epileptic circuit. J Neurosci 24:9005–9014

    Article  CAS  PubMed  Google Scholar 

  49. Knight LS, Wenzel HJ, Schwartzkroin PA (2012) Inhibition and interneuron distribution in the dentate gyrus of p35 knockout mice. Epilepsia 53(Suppl 1):161–170

    Article  PubMed  Google Scholar 

  50. Samuelsson M, Skogh E, Lundberg K, Vrethem M, Ollinger K (2013) Taurine and glutathione in plasma and cerebrospinal fluid in olanzapine treated patients with schizophrenia. Psychiatry Res 210:819–824

    Article  CAS  PubMed  Google Scholar 

  51. Lukaszuk JM, Robertson RJ, Arch JE, Moyna NM (2005) Effect of a defined lacto-ovo-vegetarian diet and oral creatine monohydrate supplementation on plasma creatine concentration. J Strength Cond Res 19:735–740

    PubMed  Google Scholar 

  52. Manso Filho HC, McKeever KH, Gordon ME, Manso HE, Lagakos WS, Wu G, Watford M (2009) Developmental changes in the concentrations of glutamine and other amino acids in plasma and skeletal muscle of the Standardbred foal. J Anim Sci 87:2528–2535

    Article  CAS  PubMed  Google Scholar 

  53. Shetty HU, Schapiro MB, Holloway HW, Rapoport SI (1995) Polyol profiles in down syndrome. myo-Inositol, specifically, is elevated in the cerebrospinal fluid. J Clin Invest 95:542–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chodobski A, Szmydynger-Chodobska J, McKinley MJ (1998) Cerebrospinal fluid formation and absorption in dehydrated sheep. Am J Physiol 275:F235–F238

    Google Scholar 

  55. Wolff SD, Yancey PH, Stanton TS, Balaban RS (1989) A simple HPLC method for quantitating major organic solutes of renal medulla. Am J Physiol 256:F954–F956

    Google Scholar 

  56. Galarreta M, Bustamante J, Martin del Rio R, Solis JM (1996) Taurine induces a long-lasting increase of synaptic efficacy and axon excitability in the hippocampus. J Neurosci 16:92–102

    CAS  PubMed  Google Scholar 

  57. Chepkova AN, Sergeeva OA, Haas HL (2006) Taurine rescues hippocampal long-term potentiation from ammonia-induced impairment. Neurobiol Dis 23:512–521

    Article  CAS  PubMed  Google Scholar 

  58. Dominy J Jr, Thinschmidt JS, Peris J, Dawson R Jr, Papke RL (2004) Taurine-induced long-lasting potentiation in the rat hippocampus shows a partial dissociation from total hippocampal taurine content and independence from activation of known taurine transporters. J Neurochem 89:1195–1205

    Article  CAS  PubMed  Google Scholar 

  59. Gullans SR, Verbalis JG (1993) Control of brain volume during hyperosmolar and hypoosmolar conditions. Annu Rev Med 44:289–301

    Article  CAS  PubMed  Google Scholar 

  60. Zhou Y, Holmseth S, Hua R, Lehre AC, Olofsson AM, Poblete-Naredo I, Kempson SA, Danbolt NC (2012) The betaine-GABA transporter (BGT1, slc6a12) is predominantly expressed in the liver and at lower levels in the kidneys and at the brain surface. Am J Physiol Renal Physiol 302:F316–F328

    Article  CAS  PubMed  Google Scholar 

  61. Zhu XM, Ong WY (2004) Changes in GABA transporters in the rat hippocampus after kainate-induced neuronal injury: decrease in GAT-1 and GAT-3 but upregulation of betaine/GABA transporter BGT-1. J Neurosci Res 77:402–409

    Article  CAS  PubMed  Google Scholar 

  62. Ripps H, Shen W (2012) Review: taurine: a “very essential” amino acid. Mol Vis 18:2673–2686

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Lambert IH, Kristensen DM, Holm JB, Mortensen OH (2015) Physiological role of taurine–from organism to organelle. Acta Physiol (Oxf) 213:191–212

    Article  CAS  Google Scholar 

  64. Lehre AC, Rowley NM, Zhou Y, Holmseth S, Guo C, Holen T, Hua R, Laake P, Olofsson AM, Poblete-Naredo I, Rusakov DA, Madsen KK, Clausen RP, Schousboe A, White HS, Danbolt NC (2011) Deletion of the betaine-GABA transporter (BGT1; slc6a12) gene does not affect seizure thresholds of adult mice. Epilepsy Res 95:70–81

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. White HS, Watson WP, Hansen SL, Slough S, Perregaard J, Sarup A, Bolvig T, Petersen G, Larsson OM, Clausen RP, Frolund B, Falch E, Krogsgaard-Larsen P, Schousboe A (2005) First demonstration of a functional role for central nervous system betaine/{gamma}-aminobutyric acid transporter (mGAT2) based on synergistic anticonvulsant action among inhibitors of mGAT1 and mGAT2. J Pharmacol Exp Ther 312:866–874

    Article  CAS  PubMed  Google Scholar 

  66. Weiler CT, Nystrom B, Hamberger A (1979) Characteristics of glutamine vs glutamate transport in isolated glia and synaptosomes. J Neurochem 32:559–565

    Article  CAS  PubMed  Google Scholar 

  67. Walls AB, Waagepetersen HS, Bak LK, Schousboe A, Sonnewald U (2015) The glutamine-glutamate/GABA cycle: function, regional differences in glutamate and GABA production and effects of interference with GABA metabolism. Neurochem Res 40:402–409

    Article  CAS  PubMed  Google Scholar 

  68. Shank RP, Aprison MH (1981) Present status and significance of the glutamine cycle in neural tissues. Life Sci 28:837–842

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for financial support from Whitman College and Danisco Sweeteners Oy, particularly for their support of the undergraduate student researchers on this project. We would like to thank Drs. Kirsti Tiihonen and Stuart AS Craig for their contributions to experimental design and data analysis. This research was partially funded by Danisco USA, Inc., a commercial supplier of betaine, and intellectually supported by employees of Danisco, Drs. Tiihonen and Craig. The authors declare that they have no competing interests to disclose and that the findings reported in this study do not constitute an endorsement for betaine as a product.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leena S. Knight.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Knight, L.S., Piibe, Q., Lambie, I. et al. Betaine in the Brain: Characterization of Betaine Uptake, its Influence on Other Osmolytes and its Potential Role in Neuroprotection from Osmotic Stress. Neurochem Res 42, 3490–3503 (2017). https://doi.org/10.1007/s11064-017-2397-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2397-3

Keywords

Navigation