Neurochemical Research

, Volume 42, Issue 10, pp 2881–2891 | Cite as

Ginkgolide B Suppresses Methamphetamine-Induced Microglial Activation Through TLR4-NF-κB Signaling Pathway in BV2 Cells

  • Fen Wan
  • Songsong Zang
  • Guoqing Yu
  • Hang Xiao
  • Jun WangEmail author
  • Jinrong TangEmail author
Original Paper


Accumulating evidence suggests that microglial cells have altered morphology and proliferation in different brain regions of methamphetamine (Meth) abusers and Meth-abusing animal models. However, the possible mechanisms underlying Meth-induced microglial activation remain poorly understood. Meanwhile, Toll-like receptor4 (TLR4) is closely associated with inflammation. Therefore the aim of the present study was to assess whether Meth treatment affects TLR4 expression; in addition, we evaluated the effects of ginkgolide B (GB), a diterpene lactone extracted from Ginkgo biloba, on Meth-mediated inflammation. BV2 cells were treated with Meth. Interestingly, Meth treatment significantly increased TLR4 expression, activated the NF-κB signaling pathway, and promoted TNF-α, IL-6 and IL-1β excretion. These effects, however, were partially attenuated by GB pre-treatment. To further confirm the role of TLR4 in Meth-mediated inflammation, the siRNA technology was applied to knock down TLR4, which resulted in hampered Meth-mediated inflammatory responses, confirming the important role of TLR4 in this process. Taken together, our findings suggested that Meth exposure results in BV2 cell activation, in association with TLR4 upregulation. GB could attenuate Meth-induced inflammation, at least partially through TLR4-NF-κB signaling pathway, therefore, targeting TLR4 may constitute a potential intervention strategy for Meth mediated neuroinflammation.


Methamphetamine Ginkgolide B BV2 cells TLR4 NF-κB 



This work was supported by the Natural Science Foundation of China (81202230, 81673213), the National Natural Science Foundation of Jiangsu Province (BK20151557), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and Program for Key disease of Jiangsu Province Science and Technology Department (BL2014088).

Compliance with Ethical Standards

Conflict of interest

The authors did not report any conflict of interest.


  1. 1.
    Rawson RA (2013) Current research on the epidemiology, medical and psychiatric effects, and treatment of methamphetamine use. J Food Drug Anal 21(4):S77–S81CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Sekine Y, Minabe Y, Ouchi Y, Takei N, Iyo M, Nakamura K, Suzuki K, Tsukada H, Okada H, Yoshikawa E, Futatsubashi M, Mori N (2003) Association of dopamine transporter loss in the orbitofrontal and dorsolateral prefrontal cortices with methamphetamine-related psychiatric symptoms. Am J Psychiatry 160(9):1699–1701CrossRefPubMedGoogle Scholar
  3. 3.
    Sekine Y, Ouchi Y, Takei N, Yoshikawa E, Nakamura K, Futatsubashi M, Okada H, Minabe Y, Suzuki K, Iwata Y, Tsuchiya KJ, Tsukada H, Iyo M, Mori N (2006) Brain serotonin transporter density and aggression in abstinent methamphetamine abusers. Arch Gen Psychiatry 63(1):90–100CrossRefPubMedGoogle Scholar
  4. 4.
    Sekine Y, Ouchi Y, Sugihara G, Takei N, Yoshikawa E, Nakamura K, Iwata Y, Tsuchiya KJ, Suda S, Suzuki K, Kawai M, Takebayashi K, Yamamoto S, Matsuzaki H, Ueki T, Mori N, Gold MS, Cadet JL (2008) Methamphetamine causes microglial activation in the brains of human abusers. J Neurosci 28(22):5756–5761CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Block ML, Zecca L, Hong JS (2007) Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 8(1):57–69CrossRefPubMedGoogle Scholar
  6. 6.
    McGeer PL, Itagaki S, Tago H, McGeer EG (1987) Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR. Neurosci Lett 79(1–2):195–200CrossRefPubMedGoogle Scholar
  7. 7.
    Tocharus J, Khonthun C, Chongthammakun S, Govitrapong P (2010) Melatonin attenuates methamphetamine-induced overexpression of pro-inflammatory cytokines in microglial cell lines. J Pineal Res 48(4):347–352CrossRefPubMedGoogle Scholar
  8. 8.
    Perry VH, Nicoll JA, Holmes C (2010) Microglia in neurodegenerative disease. Nat Rev Neurol 6(4):193–201CrossRefPubMedGoogle Scholar
  9. 9.
    Thomas DM, Dowgiert J, Geddes TJ, Francescutti-Verbeem D, Liu X, Kuhn DM (2004) Microglial activation is a pharmacologically specific marker for the neurotoxic amphetamines. Neurosci Lett 367(3):349–354CrossRefPubMedGoogle Scholar
  10. 10.
    Thomas DM, Walker PD, Benjamins JA, Geddes TJ, Kuhn DM (2004) Methamphetamine neurotoxicity in dopamine nerve endings of the striatum is associated with microglial activation. J Pharmacol Exp Ther 311(1):1–7CrossRefPubMedGoogle Scholar
  11. 11.
    Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann JA (1996) The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86(6):973–983CrossRefPubMedGoogle Scholar
  12. 12.
    Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11(5):373–384CrossRefPubMedGoogle Scholar
  13. 13.
    Bsibsi M, Ravid R, Gveric D, van Noort JM (2002) Broad expression of Toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol 61(11):1013–1021CrossRefPubMedGoogle Scholar
  14. 14.
    Lehnardt S, Lachance C, Patrizi S, Lefebvre S, Follett PL, Jensen FE, Rosenberg PA, Volpe JJ, Vartanian T (2002) The toll-like receptor TLR4 is necessary for lipopolysaccharide-induced oligodendrocyte injury in the CNS. J Neurosci 22(7):2478–2486PubMedGoogle Scholar
  15. 15.
    Yao L, Kan EM, Lu J, Hao A, Dheen ST, Kaur C, Ling EA (2013) Toll-like receptor 4 mediates microglial activation and production of inflammatory mediators in neonatal rat brain following hypoxia: role of TLR4 in hypoxic microglia. J Neuroinflamm 10(1):23CrossRefGoogle Scholar
  16. 16.
    Facci L, Barbierato M, Marinelli C, Argentini C, Skaper SD, Giusti P (2014) Toll-like receptors 2, −3 and −4 prime microglia but not astrocytes across central nervous system regions for ATP-dependent interleukin-1β release. Sci Rep 4:6824–6824CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Swaroop S, Sengupta N, Suryawanshi AR, Adlakha YK, Basu A (2016) HSP60 plays a regulatory role in IL-1beta-induced microglial inflammation via TLR4-p38 MAPK axis. J Neuroinflamm 13:27CrossRefGoogle Scholar
  18. 18.
    Lehnardt S, Massillon L, Follett P, Jensen FE, Ratan R, Rosenberg PA, Volpe JJ, Vartanian T (2003) Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci USA 100(14):8514–8519CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Walter S, Letiembre M, Liu Y, Heine H, Penke B, Hao W, Bode B, Manietta N, Walter J, Schulzschüffer W (2007) Role of the toll-like receptor 4 in neuroinflammation in Alzheimer’s disease. Cell Physiol Biochem Int 20(6):947–956CrossRefGoogle Scholar
  20. 20.
    Jin JJ, Kim HD, Maxwell JA, Ling L, Fukuchi KI (2008) Toll-like receptor 4-dependent upregulation of cytokines in a transgenic mouse model of Alzheimer’s disease. Alzheimers Dement 4(4):23CrossRefGoogle Scholar
  21. 21.
    Amieva H, Meillon C, Helmer C, Barberger-Gateau P, Dartigues JF (2013) Ginkgo biloba extract and long-term cognitive decline: a 20-year follow-up population-based study. PLoS ONE 8(1):e52755CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Oskouei DS, Rikhtegar R, Hashemilar M, Sadeghi-Bazargani H, Sharifi-Bonab M, Sadeghi-Hokmabadi E, Zarrintan S, Sharifipour E (2013) The effect of Ginkgo biloba on functional outcome of patients with acute ischemic stroke: a double-blind, placebo-controlled, randomized clinical trial. J Stroke Cerebrovasc Dis 22(8):557–563CrossRefGoogle Scholar
  23. 23.
    Nash KM, Shah ZA (2015) Current perspectives on the beneficial role of Ginkgo biloba in neurological and cerebrovascular disorders. Integr Med Insights 10:1–9CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Tan MS, Yu JT, Tan CC, Wang HF, Meng XF, Wang C, Jiang T, Zhu XC, Tan L (2015) Efficacy and adverse effects of Ginkgo biloba for cognitive impairment and dementia: a systematic review and meta-analysis. J Alzheimers Dis 43(2):589–603PubMedGoogle Scholar
  25. 25.
    Maclennan KM, Darlington CL, Smith PF (2002) The CNS effects of Ginkgo biloba extracts and ginkgolide B. Prog Neurobiol 67(3):235–257CrossRefPubMedGoogle Scholar
  26. 26.
    Gu JH, Ge JB, Li M, Wu F, Zhang W, Qin ZH (2012) Inhibition of NF-kappaB activation is associated with anti-inflammatory and anti-apoptotic effects of Ginkgolide B in a mouse model of cerebral ischemia/reperfusion injury. Eur J Pharm Sci 47(4):652–660CrossRefPubMedGoogle Scholar
  27. 27.
    Huang M, Qian Y, Guan T, Huang L, Tang X, Li Y (2012) Different neuroprotective responses of Ginkgolide B and bilobalide, the two Ginkgo components, in ischemic rats with hyperglycemia. Eur J Pharmacol 677(1–3):71–76CrossRefPubMedGoogle Scholar
  28. 28.
    Papageorgiou IE, Lewen A, Galow LV, Cesetti T, Scheffel J, Regen T, Hanisch UK, Kann O (2016) TLR4-activated microglia require IFN-gamma to induce severe neuronal dysfunction and death in situ. Proc Natl Acad Sci USA 113(1):212–217CrossRefPubMedGoogle Scholar
  29. 29.
    Goncalves J, Baptista S, Martins T, Milhazes N, Borges F, Ribeiro CF, Malva JO, Silva AP (2010) Methamphetamine-induced neuroinflammation and neuronal dysfunction in the mice hippocampus: preventive effect of indomethacin. Eur J Neurosci 31(2):315–326CrossRefPubMedGoogle Scholar
  30. 30.
    Clark KH, Wiley CA, Bradberry CW (2013) Psychostimulant abuse and neuroinflammation: emerging evidence of their interconnection. Neurotox Res 23(2):174–188CrossRefPubMedGoogle Scholar
  31. 31.
    McConnell SE, O’Banion MK, Cory-Slechta DA, Olschowka JA, Opanashuk LA (2015) Characterization of binge-dosed methamphetamine-induced neurotoxicity and neuroinflammation. Neurotoxicology 50:131–141CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Gonçalves J, Martins T, Ferreira R, Milhazes N, Borges F, Ribeiro CF, Malva JO, Macedo TR, Silva AP (2008) Methamphetamine-induced early increase of IL-6 and TNF-α mRNA expression in the mouse brain. Ann N Y Acad Sci 1139(1):103–111CrossRefPubMedGoogle Scholar
  33. 33.
    Tipton DA, Legan ZT, Dabbous M (2010) Methamphetamine cytotoxicity and effect on LPS-stimulated IL-1beta production by human monocytes. Toxicol In Vitro 24(3):921–927CrossRefPubMedGoogle Scholar
  34. 34.
    Walter S, Letiembre M, Liu Y, Heine H, Penke B, Hao W, Bode B, Manietta N, Walter J, Schulz-Schuffer W, Fassbender K (2007) Role of the toll-like receptor 4 in neuroinflammation in Alzheimer’s disease. Cell Physiol Biochem 20(6):947–956CrossRefPubMedGoogle Scholar
  35. 35.
    Sun M, Deng B, Zhao X, Gao C, Yang L, Zhao H, Yu D, Zhang F, Xu L, Chen L, Sun X (2015) Isoflurane preconditioning provides neuroprotection against stroke by regulating the expression of the TLR4 signalling pathway to alleviate microglial activation. Sci Rep 5:11445CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Jiang J, Wang M, Liang B, Shi Y, Su Q, Chen H, Huang J, Su J, Pan P, Li Y, Wang H, Chen R, Liu J, Zhao F, Ye L, Liang H (2016) In vivo effects of methamphetamine on HIV-1 replication: a population-based study. Drug Alcohol Depend 159:246–254CrossRefPubMedGoogle Scholar
  37. 37.
    Dhainaut JF, Tenaillon A, Le Tulzo Y, Schlemmer B, Solet JP, Wolff M, Holzapfel L, Zeni F, Dreyfuss D, Mira JP et al (1994) Platelet-activating factor receptor antagonist BN 52021 in the treatment of severe sepsis: a randomized, double-blind, placebo-controlled, multicenter clinical trial. BN 52021 Sepsis Study Group. Crit Care Med 22(11):1720–1728CrossRefPubMedGoogle Scholar
  38. 38.
    Hu YY, Huang M, Dong XQ, Xu QP, Yu WH, Zhang ZY (2011) Ginkgolide B reduces neuronal cell apoptosis in the hemorrhagic rat brain: possible involvement of Toll-like receptor 4/nuclear factor-kappa B pathway. J Ethnopharmacol 137(3):1462–1468CrossRefPubMedGoogle Scholar
  39. 39.
    Yu WH, Dong XQ, Hu YY, Huang M, Zhang ZY (2012) Ginkgolide B reduces neuronal cell apoptosis in the traumatic rat brain: possible involvement of toll-like receptor 4 and nuclear factor kappa B pathway. Phytother Res 26(12):1838–1844CrossRefPubMedGoogle Scholar
  40. 40.
    Li S, Meng Q, Zhang L (1999) Experimental therapy of a platelet-activating factor antagonist (ginkgolide B) on photochemically induced thrombotic cerebral ischaemia in tree shrews. Clin Exp Pharmacol Physiol 26(10):824–825CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of NeurologyThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
  2. 2.Key Lab of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public HealthNanjing Medical UniversityNanjingChina

Personalised recommendations