Neurochemical Research

, Volume 43, Issue 1, pp 19–26 | Cite as

Aggressive Crosstalk Between Fatty Acids and Inflammation in Macrophages and Their Influence on Metabolic Homeostasis

  • Kazuhiro Nishiyama
  • Yasuyuki Fujimoto
  • Tadayoshi Takeuchi
  • Yasu-Taka AzumaEmail author
Original Paper


From the immunological point of view, macrophages are required to maintain metabolic homeostasis. Recently, there has been an increased focus on the influence of macrophage phenotypes in adipose tissue on the maintenance of metabolic homeostasis in healthy conditions because dysregulated metabolic homeostasis causes metabolic syndrome. This review notes several types of inflammatory and anti-inflammatory mediators in metabolic homeostasis. M1 macrophage polarization mediates inflammation, whereas M2 macrophage polarization mediates anti-inflammation. Fatty acids and their related factors mediate both inflammatory and anti-inflammatory responses. Saturated fatty acids and polyunsaturated fatty acids mediate inflammation, whereas marine-derived n-3 fatty acids, such as eicosapentaenoic acid and docosahexaenoic acid, mediate anti-inflammation. In this review, we discuss the current understanding of the crosstalk between fatty acids and inflammation in macrophages and their influence on metabolic homeostasis.


Fatty acid Macrophage Inflammation Anti-inflammation Crosstalk Metabolic disease 


  1. 1.
    Grundy SM, Hansen B, Smith SC, Cleeman JI, Kahn RA (2004) Clinical management of metabolic syndrome: report of the American Heart Association/National Heart, Lung, and Blood Institute/American Diabetes Association conference on scientific issues related to management. Circulation 109:551–556PubMedCrossRefGoogle Scholar
  2. 2.
    Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, Fruchart JC, James WP, Loria CM, Smith SC (2009) Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120:1640–1645PubMedCrossRefGoogle Scholar
  3. 3.
    Rochlani Y, Pothineni NV, Mehta JL (2015) Metabolic syndrome: does it differ between women and men? Cardiovasc Drugs Ther 29:329–338PubMedCrossRefGoogle Scholar
  4. 4.
    Ervin RB (2009) Prevalence of metabolic syndrome among adults 20 years of age and over, by sex, age, race and ethnicity, and body mass index: United States. Natl Health Stat Rep 13:1–7Google Scholar
  5. 5.
    Meigs JB, Wilson PW, Nathan DM, D’Agostino RB, Williams K, Haffner SM (2003) Prevalence and characteristics of the metabolic syndrome in the San Antonio Heart and Framingham Offspring Studies. Diabetes 52:2160–2167PubMedCrossRefGoogle Scholar
  6. 6.
    Grundy SM (2008) Metabolic syndrome pandemic. Arterioscler Thromb Vasc Biol 28:629–636PubMedCrossRefGoogle Scholar
  7. 7.
    Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112:1821–1830PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112:1796–1808PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Lumeng CN, Bodzin JL, Saltiel AR (2007) Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 117:175–184PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Aron-Wisnewsky J, Tordjman J, Poitou C, Darakhshan F, Hugol D, Basdevant A, Aissat A, Guerre-Millo M, Clément K (2009) Human adipose tissue macrophages: m1 and m2 cell surface markers in subcutaneous and omental depots and after weight loss. J Clin Endocrinol Metab 94:4619–4623PubMedCrossRefGoogle Scholar
  11. 11.
    Satoh T, Kidoya H, Naito H, Yamamoto M, Takemura N, Nakagawa K, Yoshioka Y, Morii E, Takakura N, Takeuchi O, Akira S (2013) Critical role of Trib1 in differentiation of tissue-resident M2-like macrophages. Nature 495:524–528PubMedCrossRefGoogle Scholar
  12. 12.
    World Health Organization (2000) Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser 894:1–253Google Scholar
  13. 13.
    National Institutes of Health (1998) Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults—the evidence report. National Institutes of Health. Obes Res 6(Suppl 2):51S–209SGoogle Scholar
  14. 14.
    Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, Gordon DJ, Krauss RM, Savage PJ, Smith SC, Spertus JA, Costa F (2005) Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 112:2735–2752PubMedCrossRefGoogle Scholar
  15. 15.
    Alberti KG, Zimmet P, Shaw J, Group IETFC (2005) The metabolic syndrome—a new worldwide definition. Lancet 366:1059–1062PubMedCrossRefGoogle Scholar
  16. 16.
    Olefsky JM, Glass CK (2010) Macrophages, inflammation, and insulin resistance. Annu Rev Physiol 72:219–246PubMedCrossRefGoogle Scholar
  17. 17.
    Tilg H, Moschen AR (2008) Inflammatory mechanisms in the regulation of insulin resistance. Mol Med 14:222–231PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Osborn O, Olefsky JM (2012) The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med 18:363–374PubMedCrossRefGoogle Scholar
  19. 19.
    Hume DA, Halpin D, Charlton H, Gordon S (1984) The mononuclear phagocyte system of the mouse defined by immunohistochemical localization of antigen F4/80: macrophages of endocrine organs. Proc Natl Acad Sci USA 81:4174–4177PubMedCrossRefGoogle Scholar
  20. 20.
    Nackiewicz D, Dan M, He W, Kim R, Salmi A, Rütti S, Westwell-Roper C, Cunningham A, Speck M, Schuster-Klein C, Guardiola B, Maedler K, Ehses JA (2014) TLR2/6 and TLR4-activated macrophages contribute to islet inflammation and impair beta cell insulin gene expression via IL-1 and IL-6. Diabetologia 57:1645–1654PubMedCrossRefGoogle Scholar
  21. 21.
    Eguchi K, Manabe I (2013) acrophages and islet inflammation in type 2 diabetes. Diabetes Obes Metab 15(Suppl 3):152–158PubMedCrossRefGoogle Scholar
  22. 22.
    Boden G (2008) Obesity and free fatty acids. Endocrinol Metab Clin North Am 37(635–646):viii–ixGoogle Scholar
  23. 23.
    Eguchi K, Manabe I, Oishi-Tanaka Y, Ohsugi M, Kono N, Ogata F, Yagi N, Ohto U, Kimoto M, Miyake K, Tobe K, Arai H, Kadowaki T, Nagai R (2012) Saturated fatty acid and TLR signaling link β cell dysfunction and islet inflammation. Cell Metab 15:518–533PubMedCrossRefGoogle Scholar
  24. 24.
    Moore KJ, Sheedy FJ, Fisher EA (2013) Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 13:709–721PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Baker RG, Hayden MS, Ghosh S (2011) NF-κB, inflammation, and metabolic disease. Cell Metab 13:11–22PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Moore KJ, Tabas I (2011) Macrophages in the pathogenesis of atherosclerosis. Cell 145:341–355PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Neuschwander-Tetri BA (2007) Fatty liver and the metabolic syndrome. Curr Opin Gastroenterol 23:193–198PubMedCrossRefGoogle Scholar
  28. 28.
    Bhargava P, Lee CH (2012) Role and function of macrophages in the metabolic syndrome. Biochem J 442:253–262PubMedCrossRefGoogle Scholar
  29. 29.
    Shoelson SE, Herrero L, Naaz A (2007) Obesity, inflammation, and insulin resistance. Gastroenterology 132:2169–2180PubMedCrossRefGoogle Scholar
  30. 30.
    Maher JJ, Leon P, Ryan JC (2008) Beyond insulin resistance: innate immunity in nonalcoholic steatohepatitis. Hepatology 48:670–678PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Rivera CA, Adegboyega P, van Rooijen N, Tagalicud A, Allman M, Wallace M (2007) Toll-like receptor-4 signaling and Kupffer cells play pivotal roles in the pathogenesis of non-alcoholic steatohepatitis. J Hepatol 47:571–579PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    DePaoli AM (2014) 20 years of leptin: leptin in common obesity and associated disorders of metabolism. J Endocrinol 223:T71–T81PubMedCrossRefGoogle Scholar
  33. 33.
    Konuma K, Itoh M, Suganami T, Kanai S, Nakagawa N, Sakai T, Kawano H, Hara M, Kojima S, Izumi Y, Ogawa Y (2015) Eicosapentaenoic acid ameliorates non-alcoholic steatohepatitis in a novel mouse model using melanocortin 4 receptor-deficient mice. PLoS ONE 10:e0121528PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Itoh M, Kato H, Suganami T, Konuma K, Marumoto Y, Terai S, Sakugawa H, Kanai S, Hamaguchi M, Fukaishi T, Aoe S, Akiyoshi K, Komohara Y, Takeya M, Sakaida I, Ogawa Y (2013) Hepatic crown-like structure: a unique histological feature in non-alcoholic steatohepatitis in mice and humans. PLoS ONE 8:e82163PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Itoh M, Suganami T, Nakagawa N, Tanaka M, Yamamoto Y, Kamei Y, Terai S, Sakaida I, Ogawa Y (2011) Melanocortin 4 receptor-deficient mice as a novel mouse model of nonalcoholic steatohepatitis. Am J Pathol 179:2454–2463PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Frayn KN, Williams CM, Arner P (1996) Are increased plasma non-esterified fatty acid concentrations a risk marker for coronary heart disease and other chronic diseases? Clin Sci 90:243–253PubMedCrossRefGoogle Scholar
  37. 37.
    Chien KL, Chao CL, Kuo CH, Lin HJ, Liu PH, Chen PR, Hsu HC, Lee BC, Lee YT, Chen MF (2011) Plasma fatty acids and the risk of metabolic syndrome in ethnic Chinese adults in Taiwan. Lipids Health Dis 10:33PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Suganami T, Nishida J, Ogawa Y (2005) A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor alpha. Arterioscler Thromb Vasc Biol 25:2062–2068PubMedCrossRefGoogle Scholar
  39. 39.
    Mensink RP (1993) Effects of the individual saturated fatty acids on serum lipids and lipoprotein concentrations. Am J Clin Nutr 57:711S–714SPubMedCrossRefGoogle Scholar
  40. 40.
    Merchant AT, Kelemen LE, de Koning L, Lonn E, Vuksan V, Jacobs R, Davis B, Teo KK, Yusuf S, Anand SS, for the SHARE and SHARE-AP Investigators (2008) Interrelation of saturated fat, trans fat, alcohol intake, and subclinical atherosclerosis. Am J Clin Nutr 87:168–174PubMedCrossRefGoogle Scholar
  41. 41.
    Micha R, Mozaffarian D (2008) Trans fatty acids: effects on cardiometabolic health and implications for policy. Prostaglandins Leukot Essent Fatty Acids 79:147–152PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Hu FB, Stampfer MJ, Manson JE, Rimm E, Colditz GA, Rosner BA, Hennekens CH, Willett WC (1997) Dietary fat intake and the risk of coronary heart disease in women. N Engl J Med 337:1491–1499PubMedCrossRefGoogle Scholar
  43. 43.
    von Schacky C (2007) Omega-3 fatty acids and cardiovascular disease. Curr Opin Clin Nutr Metab Care 10:129–135CrossRefGoogle Scholar
  44. 44.
    Papackova Z, Cahova M (2015) Fatty acid signaling: the new function of intracellular lipases. Int J Mol Sci 16:3831–3855PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Nguyen MT, Favelyukis S, Nguyen AK, Reichart D, Scott PA, Jenn A, Liu-Bryan R, Glass CK, Neels JG, Olefsky JM (2007) A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways. J Biol Chem 282:35279–35292PubMedCrossRefGoogle Scholar
  46. 46.
    Lee JY, Zhao L, Youn HS, Weatherill AR, Tapping R, Feng L, Lee WH, Fitzgerald KA, Hwang DH (2004) Saturated fatty acid activates but polyunsaturated fatty acid inhibits Toll-like receptor 2 dimerized with Toll-like receptor 6 or 1. J Biol Chem 279:16971–16979PubMedCrossRefGoogle Scholar
  47. 47.
    Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS (2006) TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 116:3015–3025PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Kawai T, Akira S (2010) The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11:373–384PubMedCrossRefGoogle Scholar
  49. 49.
    Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801PubMedCrossRefGoogle Scholar
  50. 50.
    Arkan MC, Hevener AL, Greten FR, Maeda S, Li ZW, Long JM, Wynshaw-Boris A, Poli G, Olefsky J, Karin M (2005) IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med 11:191–198PubMedCrossRefGoogle Scholar
  51. 51.
    Guha M, Mackman N (2001) LPS induction of gene expression in human monocytes. Cell Signal 13:85–94PubMedCrossRefGoogle Scholar
  52. 52.
    Fang L, Wu HM, Ding PS, Liu RY (2014) TLR2 mediates phagocytosis and autophagy through JNK signaling pathway in Staphylococcus aureus-stimulated RAW264.7 cells. Cell Signal 26:806–814PubMedCrossRefGoogle Scholar
  53. 53.
    Jin J, Samuvel DJ, Zhang X, Li Y, Lu Z, Lopes-Virella MF, Huang Y (2011) Coactivation of TLR4 and TLR2/6 coordinates an additive augmentation on IL-6 gene transcription via p38MAPK pathway in U937 mononuclear cells. Mol Immunol 49:423–432PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Han MS, Jung DY, Morel C, Lakhani SA, Kim JK, Flavell RA, Davis RJ (2013) JNK expression by macrophages promotes obesity-induced insulin resistance and inflammation. Science 339:218–222PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Hussey SE, Liang H, Costford SR, Klip A, DeFronzo RA, Sanchez-Avila A, Ely B, Musi N (2012) TAK-242, a small-molecule inhibitor of Toll-like receptor 4 signalling, unveils similarities and differences in lipopolysaccharide- and lipid-induced inflammation and insulin resistance in muscle cells. Biosci Rep 33:37–47PubMedCrossRefGoogle Scholar
  56. 56.
    Jung TS, Kim SK, Shin HJ, Jeon BT, Hahm JR, Roh GS (2012) α-Lipoic acid prevents non-alcoholic fatty liver disease in OLETF rats. Liver Int 32:1565–1573PubMedCrossRefGoogle Scholar
  57. 57.
    Lucas K, Maes M (2013) Role of the Toll Like receptor (TLR) radical cycle in chronic inflammation: possible treatments targeting the TLR4 pathway. Mol Neurobiol 48:190–204PubMedCrossRefGoogle Scholar
  58. 58.
    Li Y, Yan H, Zhang Z, Zhang G, Sun Y, Yu P, Wang Y, Xu L (2015) Andrographolide derivative AL-1 improves insulin resistance through down-regulation of NF-κB signalling pathway. Br J Pharmacol 172:3151–3158PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Kim YJ, Choi MS, Cha BY, Woo JT, Park YB, Kim SR, Jung UJ (2013) Long-term supplementation of honokiol and magnolol ameliorates body fat accumulation, insulin resistance, and adipose inflammation in high-fat fed mice. Mol Nutr Food Res 57:1988–1998PubMedCrossRefGoogle Scholar
  60. 60.
    Haunerland NH, Spener F (2004) Fatty acid-binding proteins-insights from genetic manipulations. Prog Lipid Res 43:328–349PubMedCrossRefGoogle Scholar
  61. 61.
    Chmurzyńska A (2006) The multigene family of fatty acid-binding proteins (FABPs): function, structure and polymorphism. J Appl Genet 47:39–48PubMedCrossRefGoogle Scholar
  62. 62.
    Makowski L, Hotamisligil GS (2005) The role of fatty acid binding proteins in metabolic syndrome and atherosclerosis. Curr Opin Lipidol 16:543–548PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Coe NR, Bernlohr DA (1998) Physiological properties and functions of intracellular fatty acid-binding proteins. Biochim Biophys Acta 1391:287–306PubMedCrossRefGoogle Scholar
  64. 64.
    Zimmerman AW, Veerkamp JH (2002) New insights into the structure and function of fatty acid-binding proteins. Cell Mol Life Sci 59:1096–1116PubMedCrossRefGoogle Scholar
  65. 65.
    Furuhashi M, Hotamisligil GS (2008) Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat Rev Drug Discov 7:489–503PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Makowski L, Boord JB, Maeda K, Babaev VR, Uysal KT, Morgan MA, Parker RA, Suttles J, Fazio S, Hotamisligil GS, Linton MF (2001) Lack of macrophage fatty-acid-binding protein aP2 protects mice deficient in apolipoprotein E against atherosclerosis. Nat Med 7:699–705PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Boord JB, Maeda K, Makowski L, Babaev VR, Fazio S, Linton MF, Hotamisligil GS (2002) Adipocyte fatty acid-binding protein, aP2, alters late atherosclerotic lesion formation in severe hypercholesterolemia. Arterioscler Thromb Vasc Biol 22:1686–1691PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Hotamisligil GS, Johnson RS, Distel RJ, Ellis R, Papaioannou VE, Spiegelman BM (1996) Uncoupling of obesity from insulin resistance through a targeted mutation in aP2, the adipocyte fatty acid binding protein. Science 274:1377–1379PubMedCrossRefGoogle Scholar
  69. 69.
    Siegenthaler G, Hotz R, Chatellard-Gruaz D, Jaconi S, Saurat JH (1993) Characterization and expression of a novel human fatty acid-binding protein: the epidermal type (E-FABP). Biochem Biophys Res Commun 190:482–487PubMedCrossRefGoogle Scholar
  70. 70.
    Moore SM, Holt VV, Malpass LR, Hines IN, Wheeler MD (2015) Fatty acid-binding protein 5 limits the anti-inflammatory response in murine macrophages. Mol Immunol 67:265–275PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Zhang Y, Li Q, Rao E, Sun Y, Grossmann ME, Morris RJ, Cleary MP, Li B (2015) Epidermal fatty acid binding protein promotes skin inflammation induced by high-fat diet. Immunity 42:953–964PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Mariathasan S, Monack DM (2007) Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat Rev Immunol 7:31–40PubMedCrossRefGoogle Scholar
  73. 73.
    Schroder K, Tschopp J (2010) The inflammasomes. Cell 140:821–832PubMedCrossRefGoogle Scholar
  74. 74.
    Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, Thaiss CA, Kau AL, Eisenbarth SC, Jurczak MJ, Camporez JP, Shulman GI, Gordon JI, Hoffman HM, Flavell RA (2012) Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482:179–185PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Yan Y, Jiang W, Spinetti T, Tardivel A, Castillo R, Bourquin C, Guarda G, Tian Z, Tschopp J, Zhou R (2013) Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation. Immunity 38:1154–1163PubMedCrossRefGoogle Scholar
  76. 76.
    Ashcroft FM (2005) ATP-sensitive potassium channelopathies: focus on insulin secretion. J Clin Invest 115:2047–2058PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Coll RC, Robertson AA, Chae JJ, Higgins SC, Muñoz-Planillo R, Inserra MC, Vetter I, Dungan LS, Monks BG, Stutz A, Croker DE, Butler MS, Haneklaus M, Sutton CE, Núñez G, Latz E, Kastner DL, Mills KH, Masters SL, Schroder K, Cooper MA, O’Neill LA (2015) A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases. Nat Med 21:248–255PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Krishnan SM, Dowling JK, Ling YH, Diep H, Chan CT, Ferens D, Kett MM, Pinar A, Samuel CS, Vinh A, Arumugam TV, Hewitson TD, Kemp-Harper BK, Robertson AA, Cooper MA, Latz E, Mansell A, Sobey CG, Drummond GR (2016) Inflammasome activity is essential for one kidney/deoxycorticosterone acetate/salt-induced hypertension in mice. Br J Pharmacol 173:752–765PubMedCrossRefGoogle Scholar
  79. 79.
    Heinrich M, Robles M, West JE, Ortiz de Montellano BR, Rodriguez E (1998) Ethnopharmacology of Mexican asteraceae (Compositae). Annu Rev Pharmacol Toxicol 38:539–565PubMedCrossRefGoogle Scholar
  80. 80.
    Sinha S, Perdomo G, Brown NF, O’Doherty RM (2004) Fatty acid-induced insulin resistance in L6 myotubes is prevented by inhibition of activation and nuclear localization of nuclear factor kappa B. J Biol Chem 279:41294–41301PubMedCrossRefGoogle Scholar
  81. 81.
    Morrison MC, Mulder P, Salic K, Verheij J, Liang W, van Duyvenvoorde W, Menke A, Kooistra T, Kleemann R, Wielinga PY (2016) Intervention with a caspase-1 inhibitor reduces obesity-associated hyperinsulinemia, non-alcoholic steatohepatitis and hepatic fibrosis in LDLR-/-. Leiden mice. Int J Obes 40:1416–1423CrossRefGoogle Scholar
  82. 82.
    Honda H, Nagai Y, Matsunaga T, Okamoto N, Watanabe Y, Tsuneyama K, Hayashi H, Fujii I, Ikutani M, Hirai Y, Muraguchi A, Takatsu K (2014) Isoliquiritigenin is a potent inhibitor of NLRP3 inflammasome activation and diet-induced adipose tissue inflammation. J Leukoc Biol 96:1087–1100PubMedCrossRefGoogle Scholar
  83. 83.
    Watanabe Y, Nagai Y, Honda H, Okamoto N, Yamamoto S, Hamashima T, Ishii Y, Tanaka M, Suganami T, Sasahara M, Miyake K, Takatsu K (2016) Isoliquiritigenin attenuates adipose tissue inflammation in vitro and adipose tissue fibrosis through inhibition of innate immune responses in mice. Sci Rep 6:23097PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Oh DY, Talukdar S, Bae EJ, Imamura T, Morinaga H, Fan Q, Li P, Lu, WJ, Watkins SM, Olefsky JM (2010) GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142:687–698PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Jump DB (2008) N-3 polyunsaturated fatty acid regulation of hepatic gene transcription. Curr Opin Lipidol 19:242–247PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Fredriksson R, Höglund PJ, Gloriam DE, Lagerström MC, Schiöth HB (2003) Seven evolutionarily conserved human rhodopsin G protein-coupled receptors lacking close relatives. FEBS Lett 554:381–388PubMedCrossRefGoogle Scholar
  87. 87.
    Hirasawa A, Tsumaya K, Awaji T, Katsuma S, Adachi T, Yamada M, Sugimoto Y, Miyazaki S, Tsujimoto G (2005) Free fatty acids regulate gut incretin glucagon-like peptide-1 secretion through GPR120. Nat Med 11:90–94PubMedCrossRefGoogle Scholar
  88. 88.
    Talukdar S, Olefsky JM, Osborn O (2011) Targeting GPR120 and other fatty acid-sensing GPCRs ameliorates insulin resistance and inflammatory diseases. Trends Pharmacol Sci 32:543–550PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Oh DY, Walenta E, Akiyama TE, Lagakos WS, Lackey D, Pessentheiner AR, Sasik R, Hah N, Chi TJ, Cox JM, Powels MA, Di Salvo J, Sinz C, Watkins SM, Armando AM, Chung H, Evans RM, Quehenberger O, McNelis J, Bogner-Strauss JG, Olefsky JM (2014) A Gpr120-selective agonist improves insulin resistance and chronic inflammation in obese mice. Nat Med 20:942–947PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Liu HD, Wang WB, Xu ZG, Liu CH, He DF, Du LP, Li MY, Yu X, Sun JP (2015) FFA4 receptor (GPR120): a hot target for the development of anti-diabetic therapies. Eur J Pharmacol 763:160–168PubMedCrossRefGoogle Scholar
  91. 91.
    Evans RM (1988) The steroid and thyroid hormone receptor superfamily. Science 240:889–895PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Azuma YT, Nishiyama K, Matsuo Y, Kuwamura M, Morioka A, Nakajima H, Takeuchi T (2010) PPARα contributes to colonic protection in mice with DSS-induced colitis. Int Immunopharmacol 10:1261–1267PubMedCrossRefGoogle Scholar
  93. 93.
    Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L, Red Eagle A, Vats D, Brombacher F, Ferrante AW, Chawla A (2007) Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 447:1116–1120PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Desvergne B, Wahli W (1999) Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 20:649–688PubMedGoogle Scholar
  95. 95.
    Willson TM, Wahli W (1997) Peroxisome proliferator-activated receptor agonists. Curr Opin Chem Biol 1:235–241PubMedCrossRefGoogle Scholar
  96. 96.
    Guri AJ, Hontecillas R, Bassaganya-Riera J (2006) Peroxisome proliferator-activated receptors: bridging metabolic syndrome with molecular nutrition. Clin Nutr 25:871–885PubMedCrossRefGoogle Scholar
  97. 97.
    Ehehalt R, Füllekrug J, Pohl J, Ring A, Herrmann T, Stremmel W (2006) Translocation of long chain fatty acids across the plasma membrane-lipid rafts and fatty acid transport proteins. Mol Cell Biochem 284:135–140PubMedCrossRefGoogle Scholar
  98. 98.
    Black PN, DiRusso CC (2007) Yeast acyl-CoA synthetases at the crossroads of fatty acid metabolism and regulation. Biochim Biophys Acta 1771:286–298PubMedCrossRefGoogle Scholar
  99. 99.
    Su X, Abumrad NA (2009) Cellular fatty acid uptake: a pathway under construction. Trends Endocrinol Metab 20:72–77PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Anderson CM, Stahl A (2013) SLC27 fatty acid transport proteins. Mol Aspects Med 34:516–528PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Mitchell RW, On NH, Del Bigio MR, Miller DW, Hatch GM (2011) Fatty acid transport protein expression in human brain and potential role in fatty acid transport across human brain microvessel endothelial cells. J Neurochem 117:735–746PubMedCrossRefGoogle Scholar
  102. 102.
    Johnson AR, Qin Y, Cozzo AJ, Freemerman AJ, Huang MJ, Zhao L, Sampey BP, Milner JJ, Beck MA, Damania B, Rashid N, Galanko JA, Lee DP, Edin ML, Zeldin DC, Fueger PT, Dietz B, Stahl A, Wu Y, Mohlke KL, Makowski L (2016) Metabolic reprogramming through fatty acid transport protein 1 (FATP1) regulates macrophage inflammatory potential and adipose inflammation. Mol Metab 5:506–526PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Wu Q, Ortegon AM, Tsang B, Doege H, Feingold KR, Stahl A (2006) FATP1 is an insulin-sensitive fatty acid transporter involved in diet-induced obesity. Mol Cell Biol 26:3455–3467PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Kim JK, Gimeno RE, Higashimori T, Kim HJ, Choi H, Punreddy S, Mozell RL, Tan G, Stricker-Krongrad A, Hirsch DJ, Fillmore JJ, Liu ZX, Dong J, Cline G, Stahl A, Lodish HF, Shulman GI (2004) Inactivation of fatty acid transport protein 1 prevents fat-induced insulin resistance in skeletal muscle. J Clin Invest 113:756–763PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Kazuhiro Nishiyama
    • 1
  • Yasuyuki Fujimoto
    • 1
  • Tadayoshi Takeuchi
    • 1
  • Yasu-Taka Azuma
    • 1
    Email author
  1. 1.Laboratory of Veterinary Pharmacology, Division of Veterinary ScienceOsaka Prefecture University Graduate School of Life and Environmental ScienceIzumisanoJapan

Personalised recommendations