Skip to main content
Log in

Taurine Promotes the Cartilaginous Differentiation of Human Umbilical Cord-Derived Mesenchymal Stem Cells in Vitro

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Taurine has been reported to influence osteogenic differentiation, but the role of taurine on cartilaginous differentiation using human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) remains unclear. In this study, we investigated the effect of taurine (0, 1, 5 and 10 mM) on the proliferation and chondrogenesis of hUC-MSCs by analyzing cell proliferation, accumulation of glycosaminoglycans and expression of cartilage specific mRNA. The results show though taurine did not affected the proliferation of hUC-MSCs, 5 mM of taurine is sufficient to enhanced the accumulation of glycosaminoglycans and up-regulate cartilage specific mRNA expression, namely collagen type II, aggrecan and SOX9. Taurine also inhibits chondrocyte dedifferentiation by reducing expression of collagen type I mRNA. Taken together, our study reveals that taurine promotes and maintains the chondrogenesis of hUC-MSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

BM-MSCs:

Bone marrow mesenchymal stem cells

CCK-8:

Cell counting kit-8 assay

cDNA:

Complementary DNA

DAPI:

4′,6-Diamidino-2-phenylindole

DMEM:

Dulbecco’s modified Eagle’s medium

EDTA:

Ethylene diamine tetraacetic acid

FACS:

Flow cytometry

GAG:

Glycosaminoglycan

hUC-MSCs:

Human umbilical cord-derived mesenchymal stem cells

MSCs:

Mesenchymal stem cells

PBS:

Phosphate-buffered saline

TGF:

The transforming growth factor

References

  1. Weissman IL, Anderson DJ, Gage F (2001) Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu Rev Cell Dev Biol 17:387–403. doi:10.1146/annurev.cellbio.17.1.387

    Article  CAS  PubMed  Google Scholar 

  2. Wexler SA, Donaldson C, Denning-Kendall P, Rice C, Bradley B, Hows JM (2003) Adult bone marrow is a rich source of human mesenchymal ‘stem’ cells but umbilical cord and mobilized adult blood are not. Br J Haematol 121(2):368–374

    Article  PubMed  Google Scholar 

  3. Perdikogianni C, Dimitriou H, Stiakaki E, Martimianaki G, Kalmanti M (2008) Could cord blood be a source of mesenchymal stromal cells for clinical use? CytoTherapy 10(5):452–459. doi:10.1080/14653240701883079

    Article  CAS  PubMed  Google Scholar 

  4. Troyer DL, Weiss ML (2008) Wharton’s jelly-derived cells are a primitive stromal cell population. Stem Cells 26(3):591–599. doi:10.1634/stemcells.2007-0439

    Article  PubMed  Google Scholar 

  5. Dowthwaite GP, Bishop JC, Redman SN, Khan IM, Rooney P, Evans DJ, Haughton L, Bayram Z, Boyer S, Thomson B, Wolfe MS, Archer CW (2004) The surface of articular cartilage contains a progenitor cell population. J Cell Sci 117(Pt 6):889–897. doi:10.1242/jcs.00912

    Article  CAS  PubMed  Google Scholar 

  6. Nishimura K, Solchaga LA, Caplan AI, Yoo JU, Goldberg VM, Johnstone B (1999) Chondroprogenitor cells of synovial tissue. Arthritis Rheum 42(12):2631–2637. doi:10.1002/1529-0131(199912)42:12<2631::AID-ANR18>3.0.CO;2-H

    Article  CAS  PubMed  Google Scholar 

  7. De Bari C, Dell’Accio F, Tylzanowski P, Luyten FP (2001) Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 44(8):1928–1942. doi:10.1002/1529-0131(200108)44:8<1928::AID-ART331>3.0.CO;2-P

    Article  PubMed  Google Scholar 

  8. Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU (1998) In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp Cell Res 238(1):265–272. doi:10.1006/excr.1997.3858

    Article  CAS  PubMed  Google Scholar 

  9. Yoo JU, Barthel TS, Nishimura K, Solchaga L, Caplan AI, Goldberg VM, Johnstone B (1998) The chondrogenic potential of human bone-marrow-derived mesenchymal progenitor cells. J Bone Joint Surg Am 80(12):1745–1757

    Article  CAS  PubMed  Google Scholar 

  10. Derfoul A, Perkins GL, Hall DJ, Tuan RS (2006) Glucocorticoids promote chondrogenic differentiation of adult human mesenchymal stem cells by enhancing expression of cartilage extracellular matrix genes. Stem Cells 24(6):1487–1495. doi:10.1634/stemcells.2005-0415

    Article  CAS  PubMed  Google Scholar 

  11. Terauchi A, Nakazaw A, Johkura K, Yan L, Usuda N (1998) Immunohistochemical localization of taurine in various tissues of the mouse. Amino Acids 15(1–2):151–160

    Article  CAS  PubMed  Google Scholar 

  12. Wang X, Chi D, Su G, Li L, Shao L (2011) Determination of taurine in biological samples by high-performance liquid chromatography using 4-fluoro-7-nitrobenzofurazan as a derivatizing agent. Biomed Environ Sci 24(5):537–542. doi:10.3967/0895-3988.2011.05.013

    CAS  PubMed  Google Scholar 

  13. Kang YS, Ohtsuki S, Takanaga H, Tomi M, Hosoya K, Terasaki T (2002) Regulation of taurine transport at the blood-brain barrier by tumor necrosis factor-alpha, taurine and hypertonicity. J Neurochem 83(5):1188–1195

    Article  CAS  PubMed  Google Scholar 

  14. Rahman MM, Park HM, Kim SJ, Go HK, Kim GB, Hong CU, Lee YU, Kim SZ, Kim JS, Kang HS (2011) Taurine prevents hypertension and increases exercise capacity in rats with fructose-induced hypertension. Am J Hypertens 24(5):574–581. doi:10.1038/ajh.2011.4

    Article  CAS  PubMed  Google Scholar 

  15. Schaffer SW, Jong CJ, Ramila KC, Azuma J (2010) Physiological roles of taurine in heart and muscle. J Biomed Sci 17(Suppl 1):S2. doi:10.1186/1423-0127-17-S1-S2

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bitoun M, Tappaz M (2000) Taurine down-regulates basal and osmolarity-induced gene expression of its transporter, but not the gene expression of its biosynthetic enzymes, in astrocyte primary cultures. J Neurochem 75(3):919–924

    Article  CAS  PubMed  Google Scholar 

  17. Park S, Kim H, Kim SJ (2001) Stimulation of ERK2 by taurine with enhanced alkaline phosphatase activity and collagen synthesis in osteoblast-like UMR-106 cells. Biochem Pharmacol 62(8):1107–1111

    Article  CAS  PubMed  Google Scholar 

  18. Yuan LQ, Lu Y, Luo XH, Xie H, Wu XP, Liao EY (2007) Taurine promotes connective tissue growth factor (CTGF) expression in osteoblasts through the ERK signal pathway. Amino Acids 32(3):425–430. doi:10.1007/s00726-006-0380-4

    Article  CAS  PubMed  Google Scholar 

  19. Verdrengh M, Tarkowski A (2005) Inhibition of septic arthritis by local administration of taurine chloramine, a product of activated neutrophils. J Rheumatol 32(8):1513–1517

    CAS  PubMed  Google Scholar 

  20. Marcinkiewicz J, Kontny E (2014) Taurine and inflammatory diseases. Amino Acids 46(1):7–20. doi:10.1007/s00726-012-1361-4

    Article  CAS  PubMed  Google Scholar 

  21. Liu Q, Lu Z, Wu H, Zheng L (2015) Chondroprotective effects of taurine in primary cultures of human articular chondrocytes. Tohoku J Exp Med 235(3):201–213. doi:10.1620/tjem.235.201

    Article  CAS  PubMed  Google Scholar 

  22. Zhou C, Zhang X, Xu L, Wu T, Cui L, Xu D (2014) Taurine promotes human mesenchymal stem cells to differentiate into osteoblast through the ERK pathway. Amino Acids 46(7):1673–1680. doi:10.1007/s00726-014-1729-8

    Article  CAS  PubMed  Google Scholar 

  23. Mackay AM, Beck SC, Murphy JM, Barry FP, Chichester CO, Pittenger MF (1998) Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng 4(4):415–428

    Article  CAS  PubMed  Google Scholar 

  24. Murdoch AD, Grady LM, Ablett MP, Katopodi T, Meadows RS, Hardingham TE (2007) Chondrogenic differentiation of human bone marrow stem cells in transwell cultures: generation of scaffold-free cartilage. Stem Cells 25(11):2786–2796. doi:10.1634/stemcells.2007-0374

    Article  CAS  PubMed  Google Scholar 

  25. Jeon SH, Lee MY, Kim SJ, Joe SG, Kim GB, Kim IS, Kim NS, Hong CU, Kim SZ, Kim JS, Kang HS (2007) Taurine increases cell proliferation and generates an increase in [Mg2+]i accompanied by ERK 1/2 activation in human osteoblast cells. FEBS Lett 581(30):5929–5934. doi:10.1016/j.febslet.2007.11.035

    Article  CAS  PubMed  Google Scholar 

  26. Hernandez-Benitez R, Pasantes-Morales H, Saldana IT, Ramos-Mandujano G (2010) Taurine stimulates proliferation of mice embryonic cultured neural progenitor cells. J Neurosci Res 88(8):1673–1681. doi:10.1002/jnr.22328

    CAS  PubMed  Google Scholar 

  27. Hernandez-Benitez R, Ramos-Mandujano G, Pasantes-Morales H (2012) Taurine stimulates proliferation and promotes neurogenesis of mouse adult cultured neural stem/progenitor cells. Stem Cell Res 9(1):24–34. doi:10.1016/j.scr.2012.02.004

    Article  CAS  PubMed  Google Scholar 

  28. Zhang LY, Zhou YY, Chen F, Wang B, Li J, Deng YW, Liu WD, Wang ZG, Li YW, Li DZ, Lv GH, Yin BL (2011) Taurine inhibits serum deprivation-induced osteoblast apoptosis via the taurine transporter/ERK signaling pathway. Braz J Med Biol Res 44(7):618–623

    Article  CAS  PubMed  Google Scholar 

  29. Yoon DS, Kim YH, Jung HS, Paik S, Lee JW (2011) Importance of Sox2 in maintenance of cell proliferation and multipotency of mesenchymal stem cells in low-density culture. Cell Prolif 44(5):428–440. doi:10.1111/j.1365-2184.2011.00770.x

    Article  CAS  PubMed  Google Scholar 

  30. Nishida T, Kubota S, Kojima S, Kuboki T, Nakao K, Kushibiki T, Tabata Y, Takigawa M (2004) Regeneration of defects in articular cartilage in rat knee joints by CCN2 (connective tissue growth factor). J Bone Mineral Res 19(8):1308–1319. doi:10.1359/JBMR.040322

    Article  CAS  Google Scholar 

  31. Kontny E, Grabowska A, Kowalczewski J, Kurowska M, Janicka I, Marcinkiewicz J, Maslinski W (1999) Taurine chloramine inhibition of cell proliferation and cytokine production by rheumatoid arthritis fibroblast-like synoviocytes. Arthritis Rheum 42(12):2552–2560. doi:10.1002/1529-0131(199912)42:12<2552::AID-ANR7>3.0.CO;2-V

    Article  CAS  PubMed  Google Scholar 

  32. Buschmann MD, Grodzinsky AJ (1995) A molecular model of proteoglycan-associated electrostatic forces in cartilage mechanics. J Biomech Eng 117(2):179–192

    Article  CAS  PubMed  Google Scholar 

  33. Robinson D, Ash H, Yayon A, Nevo Z, Aviezer D (2001) Characteristics of cartilage biopsies used for autologous chondrocytes transplantation. Cell Transplant 10(2):203–208

    CAS  PubMed  Google Scholar 

  34. Tew SR, Li Y, Pothacharoen P, Tweats LM, Hawkins RE, Hardingham TE (2005) Retroviral transduction with SOX9 enhances re-expression of the chondrocyte phenotype in passaged osteoarthritic human articular chondrocytes. Osteoarthr Cartil 13(1):80–89. doi:10.1016/j.joca.2004.10.011

    Article  PubMed  Google Scholar 

  35. Akiyama H (2011) Transcriptional regulation in chondrogenesis by Sox9. Clin Calcium 21(6):845–851

    CAS  PubMed  Google Scholar 

  36. Tew SR, Clegg PD (2011) Analysis of post transcriptional regulation of SOX9 mRNA during in vitro chondrogenesis. Tissue Eng Part A 17(13–14):1801–1807. doi:10.1089/ten.TEA.2010.0579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Marlovits S, Hombauer M, Truppe M, Vecsei V, Schlegel W (2004) Changes in the ratio of type-I and type-II collagen expression during monolayer culture of human chondrocytes. J Bone Joint Surg Br 86(2):286–295

    Article  CAS  PubMed  Google Scholar 

  38. Karjalainen HM, Qu C, Leskela SS, Rilla K, Lammi MJ (2015) Chondrocytic cells express the taurine transporter on their plasma membrane and regulate its expression under anisotonic conditions. Amino Acids 47(3):561–570. doi:10.1007/s00726-014-1888-7

    Article  CAS  PubMed  Google Scholar 

  39. Shivaraj MC, Marcy G, Low G, Ryu JR, Zhao X, Rosales FJ, Goh EL (2012) Taurine induces proliferation of neural stem cells and synapse development in the developing mouse brain. PLoS ONE 7(8):e42935. doi:10.1371/journal.pone.0042935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Fund of China (81571216), National High Technology Research and Development Program of China (2014AA020703), Tianjin Municipal science and technology application of basic and advanced technology of key projects (11JCZDJC19400, 16JCZDJC35500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huiling Huang.

Ethics declarations

Conflict of interest

No personal, institutional or corporate financial conflict are involved in the production and publication of this information.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, X., Huang, H., Li, Z. et al. Taurine Promotes the Cartilaginous Differentiation of Human Umbilical Cord-Derived Mesenchymal Stem Cells in Vitro. Neurochem Res 42, 2344–2353 (2017). https://doi.org/10.1007/s11064-017-2252-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2252-6

Keywords

Navigation