Neurochemical Research

, Volume 42, Issue 5, pp 1459–1469 | Cite as

β-Caryophyllene Pretreatment Alleviates Focal Cerebral Ischemia-Reperfusion Injury by Activating PI3K/Akt Signaling Pathway

  • Qian Zhang
  • Ruidi An
  • Xiaocui Tian
  • Mei Yang
  • Minghang Li
  • Jie Lou
  • Lu XuEmail author
  • Zhi DongEmail author
Original Paper


β-Caryophyllene (BCP) has been reported to be protective against focal cerebral ischemia–reperfusion (I/R) injury by its anti-oxidative and anti-inflammatory features. Recent study demonstrates that the BCP exhibits potential neuroprotection against I/R injury induced apoptosis, however, the mechanism remains unknown. Therefore, we investigate the underlying anti-apoptotic mechanism of BCP pretreatment in I/R injury. Sprague–Dawley rats (pretreated with BCP suspensions or solvent orally for 7 days) were subjected to transient Middle Cerebral Artery Occlusion (MCAO) for 90 min, followed by 24 h reperfusion. Results showed that BCP pretreatment improved the neurologic deficit score, lowered the infarct volume and decreased number of apoptotic cells in the hippocampus. Moreover, in western blot and RT-qPCR detections, BCP pretreatment down-regulated the expressions of Bax and p53, up-regulated the expression of Bcl-2, and enhanced the phosphorylation of Akt on Ser473. Blockage of PI3K activity by wortmannin not only abolished the BCP-induced decreases in infarct volume and neurologic deficit score, but also dramatically abrogated the enhancement of AKt phosphorylation. Our results suggested that BCP pre-treatment protects against I/R injury partly by suppressing apoptosis via PI3K/AKt signaling pathway activation.


β-Caryophyllene Ischemic-reperfusion injury Neuroprotection Apoptosis PI3K/Akt signaling pathway 



Funding was provided by Chongqing Research Program of Basic Research and Frontier Technology (No. cstc2016jcyjA0373).


  1. 1.
    Madathil RJ, Hira RS, Stoeckl M, Sterz F, Elrod JB, Nichol G (2016) Ischemia reperfusion injury as a modifiable therapeutic target for cardioprotection or neuroprotection in patients undergoing cardiopulmonary resuscitation. Resuscitation 105:85–91CrossRefGoogle Scholar
  2. 2.
    Xing B, Chen H, Zhang M, Zhao D, Jiang R, Liu X, Zhang S (2008) Ischemic postconditioning inhibits apoptosis after focal cerebral ischemia/reperfusion injury in the rat. Stroke 39:2362–2369CrossRefPubMedGoogle Scholar
  3. 3.
    Ahmed MA, El Morsy EM, Ahmed AA (2014) Pomegranate extract protects against cerebral ischemia/reperfusion injury and preserves brain DNA integrity in rats. Life Sci 110:61–69CrossRefPubMedGoogle Scholar
  4. 4.
    Feigin VL, Lawes CMM, Bennett DA, Anderson CS (2003) Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol 2:43–53CrossRefPubMedGoogle Scholar
  5. 5.
    Fresno Vara JA, Casado E, de Castro J, Cejas P, Belda-Iniesta C, Gonzalez-Baron M (2004) PI3K/Akt signalling pathway and cancer. Cancer Treat Rev 30:193–204CrossRefPubMedGoogle Scholar
  6. 6.
    Li X, Wu C, Chen N, Gu H, Yen A, Cao L, Wang E, Wang L (2016) PI3K/Akt/mTOR signaling pathway and targeted therapy for glioblastoma. Oncotarget 7:33440–33450Google Scholar
  7. 7.
    Terragni J, Graham JR, Adams KW, Schaffer ME, Tullai JW, Cooper GM (2008) Phosphatidylinositol 3-kinase signaling in proliferating cells maintains an anti-apoptotic transcriptional program mediated by inhibition of FOXO and non-canonical activation of NFkappaB transcription factors. BMC Cell Biol 9:6CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Abe E, Fujiki M, Nagai Y, Shiqi K, Kubo T, Ishii K, Abe T, Kobayashi H (2010) The phosphatidylinositol-3 kinase/Akt pathway mediates geranylgeranylacetone-induced neuroprotection against cerebral infarction in rats. Brain Res 1330:151–157CrossRefPubMedGoogle Scholar
  9. 9.
    Wang HY, Wang GL, Yu YH, Wang Y (2009) The role of phosphoinositide-3-kinase/Akt pathway in propofol-induced postconditioning against focal cerebral ischemia-reperfusion injury in rats. Brain Res 1297:177–184CrossRefPubMedGoogle Scholar
  10. 10.
    Xu X, Chua CC, Gao J, Chua KW, Wang H, Hamdy RC, Chua BH (2008) Neuroprotective effect of humanin on cerebral ischemia/reperfusion injury is mediated by a PI3K/Akt pathway. Brain Res 1227:12–18CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Zhang L, Ravipati AS, Koyyalamudi SR, Jeong SC, Reddy N, Bartlett J, Smith PT, de la Cruz M, Monteiro MC, Melguizo Á, Jiménez E, Vicente F (2013) Anti-fungal and anti-bacterial activities of ethanol extracts of selected traditional Chinese medicinal herbs. Asian Pacific. J Trop Med 6:673–681Google Scholar
  12. 12.
    Tung YT, Chua MT, Wang SY, Chang ST (2008) Anti-inflammation activities of essential oil and its constituents from indigenous cinnamon (Cinnamomum osmophloeum) twigs. Bioresour Technol 99:3908–3913CrossRefPubMedGoogle Scholar
  13. 13.
    Legault J, Pichette A (2007) Potentiating effect of beta-caryophyllene on anticancer activity of alpha-humulene, isocaryophyllene and paclitaxel. J Pharm Pharmacol 59:1643–1647CrossRefPubMedGoogle Scholar
  14. 14.
    Klimova EI, Vazquez Lopez EA, Klimova T (2014) Antigenotoxic capacity of beta-caryophyllene in mouse, and evaluation of its antioxidant and GST induction activities. J Toxicol Sci 39:849–859CrossRefGoogle Scholar
  15. 15.
    Cheng Y, Dong Z, Liu S (2014) Beta-caryophyllene ameliorates the Alzheimer-like phenotype in APP/PS1 mice through CB2 receptor activation and the PPARgamma pathway. Pharmacology 94:1–12CrossRefPubMedGoogle Scholar
  16. 16.
    Bahi A, Al Mansouri S, Al Memari E, Al Ameri M, Nurulain SM, Ojha S (2014) Beta-caryophyllene, a CB2 receptor agonist produces multiple behavioral changes relevant to anxiety and depression in mice. Physiol Behav 135:119–124CrossRefPubMedGoogle Scholar
  17. 17.
    Lou J, Cao G, Li R, Liu J, Dong Z, Xu L (2016) Beta-caryophyllene attenuates focal cerebral ischemia-reperfusion injury by Nrf2/HO-1 pathway in rats. Neurochem Res 41:1291–1304CrossRefPubMedGoogle Scholar
  18. 18.
    Bederson JB, Pitts LH, Tsuji M, Nishimura MC, Davis RL, Bartkowski H (1986) Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke 17:472–476CrossRefPubMedGoogle Scholar
  19. 19.
    Ljubisavljevic MR, Javid A, Oommen J, Parekh K, Nagelkerke N, Shehab S, Adrian TE (2015) The effects of different repetitive transcranial magnetic stimulation (rTMS) protocols on cortical gene expression in a rat model of cerebral ischemic-reperfusion Injury. PLoS One 10:e0139892Google Scholar
  20. 20.
    Walker TL, Kempermann G (2014) One mouse, two cultures: isolation and culture of adult neural stem cells from the two neurogenic zones of individual mice. J Vis Exp 84:e51225Google Scholar
  21. 21.
    Liang L, Wang XY, Zhang XH, Ji B, Yan HC, Deng HZ, Wu XR (2012) Sophoridine exerts an anti-colorectal carcinoma effect through apoptosis induction in vitro and in vivo. Life Sci 91:1295–1303CrossRefPubMedGoogle Scholar
  22. 22.
    Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22:391–397CrossRefPubMedGoogle Scholar
  23. 23.
    Chang HJ, Kim JM, Lee JC, Kim WK, Chun HS (2013) Protective effect of beta-caryophyllene, a natural bicyclic sesquiterpene, against cerebral ischemic injury. J Med Food 16:471–480CrossRefPubMedGoogle Scholar
  24. 24.
    Choi IY, Ju C, Jalin AMAA, Da IL, Prather PL, Kim WK (2013) activation of cannabinoid CB2 receptor–mediated AMPK/CREB pathway reduces cerebral ischemic injury. Am J Pathol 182:928–939CrossRefPubMedGoogle Scholar
  25. 25.
    Al-Alami ZM, Shraideh ZA, Taha MO (2015) β-Caryophyllene as putative male contraceptive: enhances spermatogenesis but not spermiogenesis in albino rats. Med Chem Res 24:3876–3884CrossRefGoogle Scholar
  26. 26.
    Cheng Y, Dong Z, Liu S (2014) β-Caryophyllene ameliorates the Alzheimer-Like phenotype in APP/PS1 Mice through CB2 receptor activation and the PPARγ pathway. Pharmacology 94:1–12CrossRefPubMedGoogle Scholar
  27. 27.
    Hosmer DW, Lemeshow S (2005) Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science 310:329–332CrossRefGoogle Scholar
  28. 28.
    Viscomi M, Oddi S, L, Pasquariello N, Florenzano F, Bernardi G, Molinari M, Maccarrone M (2009) Selective CB2 receptor agonism protects central neurons from remote axotomy-induced apoptosis through the PI3K/Akt pathway. J Neurosci Off J Soc Neurosci 29:4564–4570CrossRefGoogle Scholar
  29. 29.
    Ashton JC, Friberg D, Darlington CL, Smith PF (2006) Expression of the cannabinoid CB2 receptor in the rat cerebellum: An immunohistochemical study. Neurosci Lett 396:113–116CrossRefPubMedGoogle Scholar
  30. 30.
    Gong JP, Onaivi ES, Ishiguro H, Liu QR, Tagliaferro PA, Brusco A, Uhl GR (2006) Cannabinoid CB2 receptors: immunohistochemical localization in rat brain. Brain Res 1071:10–23CrossRefPubMedGoogle Scholar
  31. 31.
    Bisogno T, Oddi S, Piccoli A, Fazio D, Maccarrone M (2016) Type-2 cannabinoid receptors in neurodegeneration. Pharmacol Res 111:721–730CrossRefPubMedGoogle Scholar
  32. 32.
    Javed H, Azimullah S, Haque ME, Ojha SK (2016) Cannabinoid type 2 (CB2) receptors activation protects against oxidative stress and neuroinflammation associated dopaminergic neurodegeneration in rotenone model of parkinson’s Disease. Front Neurosci 10:321CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Zhang M, Adler MW, Abood ME, Ganea D, Jallo J, Tuma RF (2009) CB2 receptor activation attenuates microcirculatory dysfunction during cerebral ischemic/reperfusion injury. Microvasc Res 78:86–94CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Li Q, Wang F, Zhang YM, Zhou JJ, Zhang Y (2013) Activation of cannabinoid type 2 receptor by JWH133 protects heart against ischemia/reperfusion-induced apoptosis. Cell physiol biochem 31:693–702CrossRefPubMedGoogle Scholar
  35. 35.
    Putcha GV, Deshmukh M, Jr JE (1999) BAX translocation is a critical event in neuronal apoptosis: regulation by neuroprotectants, BCL-2, and caspases. J Neurosci 19:7476–7485PubMedGoogle Scholar
  36. 36.
    Gross A, Jockel J, Wei MC, Korsmeyer SJ (1998) Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis. Embo J 17:3878–3885CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Cheng EHYA, Wei MC, Weiler S, Flavell RA, Mak TW, Lindsten T, Korsmeyer SJ (2001) BCL-2, BCL-XL sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol Cell 8:705–711CrossRefPubMedGoogle Scholar
  38. 38.
    Zhang R, Xue YY, Lu SD, Wang Y, Zhang LM, Huang YL, Signore AP, Chen J, Sun FY (2006) Bcl-2 enhances neurogenesis and inhibits apoptosis of newborn neurons in adult rat brain following a transient middle cerebral artery occlusion. Neurobiol Dis 24:345–356CrossRefPubMedGoogle Scholar
  39. 39.
    He H, Distelhorst CW (1997) Maintenance of calcium homeostasis in the endoplasmic reticulum by Bcl-2. J Cell Biol 138(:):1219–1228CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Lam M, Dubyak G, Chen L, Nuñez G, Miesfeld RL, Distelhorst CW (1994) Evidence that BCL-2 represses apoptosis by regulating endoplasmic reticulum-associated Ca2 + fluxes. Proc Natl Acad Sci USA 91:6569–6573CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Clarke AR, Purdie CA, Harrison DJ, Morris RG, Bird CC, Hooper ML, Wyllie AH (1993) Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature 362:849–852CrossRefPubMedGoogle Scholar
  42. 42.
    Lowe SW, Schmitt EM, Smith SW, Osborne BA, Jacks T (1993) P53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 362:847–849CrossRefPubMedGoogle Scholar
  43. 43.
    Miyashita T, Reed JC (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80:293–299CrossRefPubMedGoogle Scholar
  44. 44.
    Xu D (2002) Ets1 is required for p53 transcriptional activity in UV-induced apoptosis in embryonic stem cells.EMBO J 21:4081–4093CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Wang JK, Yu LN, Zhang FJ, Yang MJ, Yu J, Yan M, Chen G (2010) Postconditioning with sevoflurane protects against focal cerebral ischemia and reperfusion injury via PI3K/Akt pathway. Brain Res 1357:142–151CrossRefPubMedGoogle Scholar
  46. 46.
    Crumrine RC, Thomas AL, Morgan PF (1994) Attenuation of p53 expression protects against focal ischemic damage in transgenic mice. J Cereb Blood Flow Metab 14:887–891CrossRefPubMedGoogle Scholar
  47. 47.
    Leker RR, Aharonowiz M, Greig NH, Ovadia H (2004) The role of p53-induced apoptosis in cerebral ischemia: effects of the p53 inhibitor pifithrin alpha. Exp Neurol 187:478–486CrossRefPubMedGoogle Scholar
  48. 48.
    Cantley LC (2002) The phosphoinositide 3-kinase pathway. Science 296:1655–1657CrossRefPubMedGoogle Scholar
  49. 49.
    Song G, Ouyang G, Bao S (2005) The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 9:59CrossRefPubMedGoogle Scholar
  50. 50.
    Stemke-Hale K, Gonzalez-Angulo AM, Lluch A, Neve RM, Kuo WL, Davies M, Carey M, Hu Z, Guan Y, Sahin A, Symmans WF, Pusztai L, Nolden LK, Horlings H, Berns K, Hung MC, van de Vijver MJ, Valero V, Gray JW, Bernards R, Mills GB, Hennessy BT (2008) An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res 68:6084–6091CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, School of PharmacyChongqing Medical UniversityChongqingChina

Personalised recommendations