Skip to main content

Advertisement

Log in

Mitochondrial Complex I Activity is Conditioned by Supercomplex I–III2–IV Assembly in Brain Cells: Relevance for Parkinson’s Disease

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The assembly of complex I (CI) with complexes III (CIII) and IV (CIV) of the mitochondrial respiratory chain (MRC) to configure I–III- or I–III–IV-containing supercomplexes (SCs) regulates mitochondrial energy efficiency and reactive oxygen species (mROS) production. However, whether the occurrence of SCs impacts on CI specific activity remains unknown to our knowledge. To investigate this issue, here we determined CI activity in primary neurons and astrocytes, cultured under identical antioxidants-free medium, from two mouse strains (C57Bl/6 and CBA) and Wistar rat, i.e. three rodent species with or without the ability to assemble CIV into SCs. We found that CI activity was 6- or 1.8-fold higher in astrocytes than in neurons, respectively, from rat or CBA mouse, which can form I–III2–IV SC; however, CI activity was similar in the cells from C57Bl/6 mouse, which does not form I–III2–IV SC. Interestingly, CII–III activity, which was comparable in neurons and astrocytes from mice, was about 50% lower in astrocytes when compared with neurons from rat, a difference that was abolished by antioxidants- or serum-containing media. CIV and citrate synthase activities were similar under all conditions studied. Interestingly, in rat astrocytes, CI abundance in I–III2–IV SC was negligible when compared with its abundance in I–III-containing SCs. Thus, CIV-containing SCs formation may determine CI specific activity in astrocytes, which is important to understand the mechanism for CI deficiency observed in Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AO:

With antioxidants

BNGE:

Blue native gel electrophoresis

CI:

Complex I

CIII:

Complex III

CIV:

Complex IV

DMEM:

Dulbecco’s modified eagle’s medium

FCS:

Fetal calf serum

MAO:

Minus antioxidants

MRC:

Mitochondrial respiratory chain

mROS:

Mitochondrial reactive oxygen species

PAGE:

Polyacrylamide gel electrophoresis

PBS:

Phosphate buffered saline

SCAF1:

Supercomplex assembly factor 1

SC:

Supercomplex

References

  1. Bianchi C, Genova ML, Parenti Castelli G, Lenaz G (2004) The mitochondrial respiratory chain is partially organized in a supercomplex assembly: kinetic evidence using flux control analysis. J Biol Chem 279:36562–36569

    Article  CAS  PubMed  Google Scholar 

  2. Lapuente-Brun E, Moreno-Loshuertos R, Acin-Perez R, Latorre-Pellicer A, Colas C, Balsa E, Perales-Clemente E, Quiros PM, Calvo E, Rodriguez-Hernandez MA, Navas P, Cruz R, Carracedo A, Lopez-Otin C, Perez-Martos A, Fernandez-Silva P, Fernandez-Vizarra E, Enriquez JA (2013) Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science 340:1567–1570

    Article  CAS  PubMed  Google Scholar 

  3. Letts JA, Fiedorczuk K, Sazanov LA (2016) The architecture of respiratory supercomplexes. Nature 537:644–648

    Article  CAS  PubMed  Google Scholar 

  4. Cogliati S, Frezza C, Soriano ME, Varanita T, Quintana-Cabrera R, Corrado M, Cipolat S, Costa V, Casarin A, Gomes LC, Perales-Clemente E, Salviati L, Fernandez-Silva P, Enriquez JA, Scorrano L (2013) Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell 155:160–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Enriquez JA (2016) Supramolecular organization of respiratory complexes. Annu Rev Physiol 78:533–561

    Article  CAS  PubMed  Google Scholar 

  6. Cogliati S, Enriquez JA, Scorrano L (2016) Mitochondrial cristae: where beauty meets functionality. Trends Biochem Sci 41:261–273

    Article  CAS  PubMed  Google Scholar 

  7. Lopez-Fabuel I, Le Douce J, Logan A, James AM, Bonvento G, Murphy MP, Almeida A, Bolanos JP (2016) Complex I assembly into supercomplexes determines differential mitochondrial ROS production in neurons and astrocytes. Proc Natl Acad Sci USA. doi:10.1073/pnas.1613701113

    PubMed  PubMed Central  Google Scholar 

  8. Bolaños JP, Heales SJR, Land JM, Clark JB (1995) Effect of peroxynitrite on the mitochondrial respiratory chain: differential susceptibility of neurones and astrocytes in primary cultures. J Neurochem 64:1965–1972

    Article  PubMed  Google Scholar 

  9. Stewart VC, Land JM, Clark JB, Heales SJ (1998) Comparison of mitochondrial respiratory chain enzyme activities in rodent astrocytes and neurones and a human astrocytoma cell line. Neurosci Lett 247:201–203

    Article  CAS  PubMed  Google Scholar 

  10. Requejo-Aguilar R, Lopez-Fabuel I, Fernandez E, Martins LM, Almeida A, Bolanos JP (2014) PINK1 deficiency sustains cell proliferation by reprogramming glucose metabolism through HIF1. Nat Commun 5:4514

    Article  CAS  PubMed  Google Scholar 

  11. Jimenez-Blasco D, Santofimia-Castano P, Gonzalez A, Almeida A, Bolanos JP (2015) Astrocyte NMDA receptors’ activity sustains neuronal survival through a Cdk5-Nrf2 pathway. Cell Death Differ 22:1877–1889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ragan CI, Wilson MT, Darley-Usmar VM, Lowe PN (1987) Subfractionation of mitochondria and isolation of the proteins of oxidative phosphorylation. In: Darley-Usmar VM, Rickwood D, Wilson MT (eds) Mitochondria: a practical approach. IRL Press, London, pp 79–112

    Google Scholar 

  13. King TE (1967) Preparation of succinate cytochrome c reductase and the cytochrome b-c1 particle, and reconstitution of succinate cytochrome c reductase. Methods Enzymol 10:216–225

    Article  CAS  Google Scholar 

  14. Wharton DC, Tzagoloff A (1967) Cytochrome oxidase from beef heart mitochondria. Methods Enzymol 10:245–250

    Article  CAS  Google Scholar 

  15. Shepherd JA, Garland PB (1969) Citrate synthase from rat liver. Methods Enzymol 13:11–19

    Article  CAS  Google Scholar 

  16. Acin-Perez R, Fernandez-Silva P, Peleato ML, Perez-Martos A, Enriquez JA (2008) Respiratory active mitochondrial supercomplexes. Mol Cell 32:529–539

    Article  CAS  PubMed  Google Scholar 

  17. Diaz F, Barrientos A, Fontanesi F (2009) Evaluation of the mitochondrial respiratory chain and oxidative phosphorylation system using blue native gel electrophoresis. Curr Protoc Hum Genet 19(19):14

    Google Scholar 

  18. Cogliati S, Calvo E, Loureiro M, Guaras AM, Nieto-Arellano R, Garcia-Poyatos C, Ezkurdia I, Mercader N, Vazquez J, Enriquez JA (2016) Mechanism of super-assembly of respiratory complexes III and IV. Nature. doi:10.1038/nature20157

    Google Scholar 

  19. Tsai MJ, Lee EH (1994) Differences in the disposition and toxicity of 1-methyl-4-phenylpyridinium in cultured rat and mouse astrocytes. Glia 12:329–335

    Article  CAS  PubMed  Google Scholar 

  20. Davey GP, Clark JB (1996) Threshold effects and control of oxidative phosphorylation in nonsynaptic rat brain mitochondria. J Neurochem 66:1617–1624

    Article  CAS  PubMed  Google Scholar 

  21. Perry TL, Godin DV, Hansen S (1982) Parkinson’s disease: a disorder due to nigral glutathione deficiency? Neurosci Lett 33:305–310

    Article  CAS  PubMed  Google Scholar 

  22. Schapira AH, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD (1989) Mitochondrial complex I deficiency in Parkinson’s disease. Lancet 1:1269

    Article  CAS  PubMed  Google Scholar 

  23. Schapira AH (2012) Mitochondrial diseases. Lancet 379:1825–1834

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.P.B. is funded by MINECO (SAF2013-41177-R, SAF2016-78114-R), CIBER on Frailty and Aging from the Instituto de Salud Carlos III (CB16/10/00282), E.U. SP3-People-MC-ITN programme (608381), EU BATCure Grant (666918) and FEDER (European regional development fund). A.A.P. is funded by the Instituto de Salud Carlos III (RD12/0014/0007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan P. Bolaños.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopez-Fabuel, I., Resch-Beusher, M., Carabias-Carrasco, M. et al. Mitochondrial Complex I Activity is Conditioned by Supercomplex I–III2–IV Assembly in Brain Cells: Relevance for Parkinson’s Disease. Neurochem Res 42, 1676–1682 (2017). https://doi.org/10.1007/s11064-017-2191-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-017-2191-2

Keywords

Navigation