Neurochemical Research

, Volume 42, Issue 6, pp 1676–1682 | Cite as

Mitochondrial Complex I Activity is Conditioned by Supercomplex I–III2–IV Assembly in Brain Cells: Relevance for Parkinson’s Disease

  • Irene Lopez-Fabuel
  • Monica Resch-Beusher
  • Monica Carabias-Carrasco
  • Angeles Almeida
  • Juan P. Bolaños
Original Paper


The assembly of complex I (CI) with complexes III (CIII) and IV (CIV) of the mitochondrial respiratory chain (MRC) to configure I–III- or I–III–IV-containing supercomplexes (SCs) regulates mitochondrial energy efficiency and reactive oxygen species (mROS) production. However, whether the occurrence of SCs impacts on CI specific activity remains unknown to our knowledge. To investigate this issue, here we determined CI activity in primary neurons and astrocytes, cultured under identical antioxidants-free medium, from two mouse strains (C57Bl/6 and CBA) and Wistar rat, i.e. three rodent species with or without the ability to assemble CIV into SCs. We found that CI activity was 6- or 1.8-fold higher in astrocytes than in neurons, respectively, from rat or CBA mouse, which can form I–III2–IV SC; however, CI activity was similar in the cells from C57Bl/6 mouse, which does not form I–III2–IV SC. Interestingly, CII–III activity, which was comparable in neurons and astrocytes from mice, was about 50% lower in astrocytes when compared with neurons from rat, a difference that was abolished by antioxidants- or serum-containing media. CIV and citrate synthase activities were similar under all conditions studied. Interestingly, in rat astrocytes, CI abundance in I–III2–IV SC was negligible when compared with its abundance in I–III-containing SCs. Thus, CIV-containing SCs formation may determine CI specific activity in astrocytes, which is important to understand the mechanism for CI deficiency observed in Parkinson’s disease.


Neurons Astrocytes Bioenergetics Parkinson’s disease Mitochondria Complexes 



With antioxidants


Blue native gel electrophoresis


Complex I


Complex III


Complex IV


Dulbecco’s modified eagle’s medium


Fetal calf serum


Minus antioxidants


Mitochondrial respiratory chain


Mitochondrial reactive oxygen species


Polyacrylamide gel electrophoresis


Phosphate buffered saline


Supercomplex assembly factor 1





J.P.B. is funded by MINECO (SAF2013-41177-R, SAF2016-78114-R), CIBER on Frailty and Aging from the Instituto de Salud Carlos III (CB16/10/00282), E.U. SP3-People-MC-ITN programme (608381), EU BATCure Grant (666918) and FEDER (European regional development fund). A.A.P. is funded by the Instituto de Salud Carlos III (RD12/0014/0007).


  1. 1.
    Bianchi C, Genova ML, Parenti Castelli G, Lenaz G (2004) The mitochondrial respiratory chain is partially organized in a supercomplex assembly: kinetic evidence using flux control analysis. J Biol Chem 279:36562–36569CrossRefPubMedGoogle Scholar
  2. 2.
    Lapuente-Brun E, Moreno-Loshuertos R, Acin-Perez R, Latorre-Pellicer A, Colas C, Balsa E, Perales-Clemente E, Quiros PM, Calvo E, Rodriguez-Hernandez MA, Navas P, Cruz R, Carracedo A, Lopez-Otin C, Perez-Martos A, Fernandez-Silva P, Fernandez-Vizarra E, Enriquez JA (2013) Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science 340:1567–1570CrossRefPubMedGoogle Scholar
  3. 3.
    Letts JA, Fiedorczuk K, Sazanov LA (2016) The architecture of respiratory supercomplexes. Nature 537:644–648CrossRefPubMedGoogle Scholar
  4. 4.
    Cogliati S, Frezza C, Soriano ME, Varanita T, Quintana-Cabrera R, Corrado M, Cipolat S, Costa V, Casarin A, Gomes LC, Perales-Clemente E, Salviati L, Fernandez-Silva P, Enriquez JA, Scorrano L (2013) Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell 155:160–171CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Enriquez JA (2016) Supramolecular organization of respiratory complexes. Annu Rev Physiol 78:533–561CrossRefPubMedGoogle Scholar
  6. 6.
    Cogliati S, Enriquez JA, Scorrano L (2016) Mitochondrial cristae: where beauty meets functionality. Trends Biochem Sci 41:261–273CrossRefPubMedGoogle Scholar
  7. 7.
    Lopez-Fabuel I, Le Douce J, Logan A, James AM, Bonvento G, Murphy MP, Almeida A, Bolanos JP (2016) Complex I assembly into supercomplexes determines differential mitochondrial ROS production in neurons and astrocytes. Proc Natl Acad Sci USA. doi: 10.1073/pnas.1613701113 PubMedPubMedCentralGoogle Scholar
  8. 8.
    Bolaños JP, Heales SJR, Land JM, Clark JB (1995) Effect of peroxynitrite on the mitochondrial respiratory chain: differential susceptibility of neurones and astrocytes in primary cultures. J Neurochem 64:1965–1972CrossRefPubMedGoogle Scholar
  9. 9.
    Stewart VC, Land JM, Clark JB, Heales SJ (1998) Comparison of mitochondrial respiratory chain enzyme activities in rodent astrocytes and neurones and a human astrocytoma cell line. Neurosci Lett 247:201–203CrossRefPubMedGoogle Scholar
  10. 10.
    Requejo-Aguilar R, Lopez-Fabuel I, Fernandez E, Martins LM, Almeida A, Bolanos JP (2014) PINK1 deficiency sustains cell proliferation by reprogramming glucose metabolism through HIF1. Nat Commun 5:4514CrossRefPubMedGoogle Scholar
  11. 11.
    Jimenez-Blasco D, Santofimia-Castano P, Gonzalez A, Almeida A, Bolanos JP (2015) Astrocyte NMDA receptors’ activity sustains neuronal survival through a Cdk5-Nrf2 pathway. Cell Death Differ 22:1877–1889CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ragan CI, Wilson MT, Darley-Usmar VM, Lowe PN (1987) Subfractionation of mitochondria and isolation of the proteins of oxidative phosphorylation. In: Darley-Usmar VM, Rickwood D, Wilson MT (eds) Mitochondria: a practical approach. IRL Press, London, pp 79–112Google Scholar
  13. 13.
    King TE (1967) Preparation of succinate cytochrome c reductase and the cytochrome b-c1 particle, and reconstitution of succinate cytochrome c reductase. Methods Enzymol 10:216–225CrossRefGoogle Scholar
  14. 14.
    Wharton DC, Tzagoloff A (1967) Cytochrome oxidase from beef heart mitochondria. Methods Enzymol 10:245–250CrossRefGoogle Scholar
  15. 15.
    Shepherd JA, Garland PB (1969) Citrate synthase from rat liver. Methods Enzymol 13:11–19CrossRefGoogle Scholar
  16. 16.
    Acin-Perez R, Fernandez-Silva P, Peleato ML, Perez-Martos A, Enriquez JA (2008) Respiratory active mitochondrial supercomplexes. Mol Cell 32:529–539CrossRefPubMedGoogle Scholar
  17. 17.
    Diaz F, Barrientos A, Fontanesi F (2009) Evaluation of the mitochondrial respiratory chain and oxidative phosphorylation system using blue native gel electrophoresis. Curr Protoc Hum Genet 19(19):14Google Scholar
  18. 18.
    Cogliati S, Calvo E, Loureiro M, Guaras AM, Nieto-Arellano R, Garcia-Poyatos C, Ezkurdia I, Mercader N, Vazquez J, Enriquez JA (2016) Mechanism of super-assembly of respiratory complexes III and IV. Nature. doi: 10.1038/nature20157 Google Scholar
  19. 19.
    Tsai MJ, Lee EH (1994) Differences in the disposition and toxicity of 1-methyl-4-phenylpyridinium in cultured rat and mouse astrocytes. Glia 12:329–335CrossRefPubMedGoogle Scholar
  20. 20.
    Davey GP, Clark JB (1996) Threshold effects and control of oxidative phosphorylation in nonsynaptic rat brain mitochondria. J Neurochem 66:1617–1624CrossRefPubMedGoogle Scholar
  21. 21.
    Perry TL, Godin DV, Hansen S (1982) Parkinson’s disease: a disorder due to nigral glutathione deficiency? Neurosci Lett 33:305–310CrossRefPubMedGoogle Scholar
  22. 22.
    Schapira AH, Cooper JM, Dexter D, Jenner P, Clark JB, Marsden CD (1989) Mitochondrial complex I deficiency in Parkinson’s disease. Lancet 1:1269CrossRefPubMedGoogle Scholar
  23. 23.
    Schapira AH (2012) Mitochondrial diseases. Lancet 379:1825–1834CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Irene Lopez-Fabuel
    • 1
    • 2
  • Monica Resch-Beusher
    • 1
    • 2
  • Monica Carabias-Carrasco
    • 1
    • 2
  • Angeles Almeida
    • 1
    • 2
  • Juan P. Bolaños
    • 1
    • 2
  1. 1.Institute of Functional Biology and Genomics (IBFG)University of Salamanca-CSICSalamancaSpain
  2. 2.Institute of Biomedical Research of Salamanca (IBSAL)University Hospital of SalamancaSalamancaSpain

Personalised recommendations