Advertisement

Neurochemical Research

, Volume 42, Issue 2, pp 667–677 | Cite as

Anti-Neuroinflammatory Effects of Fucoxanthin via Inhibition of Akt/NF-κB and MAPKs/AP-1 Pathways and Activation of PKA/CREB Pathway in Lipopolysaccharide-Activated BV-2 Microglial Cells

  • Dong Zhao
  • Seung-Hwan Kwon
  • Yoon Sun Chun
  • Ming-Yao Gu
  • Hyun Ok Yang
Original Paper

Abstract

Microglia play a critical role in controlling the homeostasis of the brain, but over-activated microglia secrete pro-inflammatory mediators and cytokines, which induce neuronal cell death. Fucoxanthin (Fx), a marine carotenoid, has demonstrated a variety of beneficial health effects. Despite accumulating evidence supporting the immune-modulating effects of Fx in vitro, the underlying signaling pathways remain unknown. In the present study, Fx dose-dependently inhibited the secretion of lipopolysaccharide (LPS)-induced pro-inflammatory mediators including interleukin (IL)-6, tumor necrosis factor (TNF)-α, reactive oxygen species (ROS), prostaglandin (PG) E2, and nitric oxide (NO) productions, and also suppressed the expression of inducible NO synthase (iNOS) and cyclooxygenase (COX)-2 enzymes. Further, the reverse transcription-polymerase chain reaction (RT-PCR) analysis indicated IL-6, TNF-α, iNOS, and COX-2 mRNA expression were suppressed by treatment with Fx in a dose-dependently manner. The mechanism studies indicated that Fx blocks protein kinase B (Akt)/nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinase (MAPKs)/transcription factor (AP)-1 pathways. In addition, we demonstrated that Fx increases nuclear factor erythroid 2-related factor (Nrf)-2 activation and heme oxygenase (HO)-1 expression in LPS-activated BV-2 microglia. Subsequently, we found that Fx also mediates the reactive oxygen species (ROS) by activating protein kinase A (PKA)/cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) pathway, and promotes the production of brain-derived neurotrophic factor (BDNF). These results indicate that Fx may be more effective and potential than other candidates via either decreasing the pro-inflammatory factors production or increasing the neuroprotective molecules expression for therapy of neurodegenerative diseases.

Keywords

Fucoxanthin BV-2 microglia Neuro-inflammation PKA/CREB pathway 

Notes

Acknowledgements

This research study was supported by the Institutional Program of the Korea Institute of Science and Technology (2Z04690), the Bio-Synergy Research Project (NRF-2012M3A9C4048793) and the Bio & Medical Technology Development Program (NRF-2015M3A9A5030735) of the Ministry of Science, ICT, and Future Planning through the National Research Foundation, Republic of Korea.

Compliance with Ethical Standards

Conflict of interest

The authors have no conflict of interest.

References

  1. 1.
    Teismann P, Tieu K, Cohen O, Choi DK, Wu DC, Marks D, Vila M, Jackson-Lewis V, Przedborski S (2003) Pathogenic role of glial cells in Parkinson’s disease. Mov Disord 18(2):121–129. doi: 10.1002/mds.10332 CrossRefPubMedGoogle Scholar
  2. 2.
    Heneka MT, O’Banion MK, Terwel D, Kummer MP (2010) Neuroinflammatory processes in Alzheimer’s disease. J Neural Transm 117(8):919–947. doi: 10.1007/s00702-010-0438-z CrossRefPubMedGoogle Scholar
  3. 3.
    Kaur G, Han SJ, Yang I, Crane C (2010) Microglia and central nervous system immunity. Neurosurg Clin N Am 21(1):43–51. doi: 10.1016/j.nec.2009.08.009 CrossRefPubMedGoogle Scholar
  4. 4.
    Graeber MB, Streit WJ (2010) Microglia: biology and pathology. Acta Neuropathol 119(1):89–105. doi: 10.1007/s00401-009-0622-0 CrossRefPubMedGoogle Scholar
  5. 5.
    Dendorfer U, Oettgen P, Libermann TA (1994) Multiple regulatory elements in the interleukin-6 gene mediate induction by prostaglandin, cyclic AMP, and lipopolysaccharide. Mol Cell Biol 14(7):4443–4454CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Lee TS, Chau LY (2002) Heme oxygenase-1 mediates the anti-inflammatory effect of interleukin-10 in mice. Nat Med 8(3):240–246. doi: 10.1038/nm0302-240 CrossRefPubMedGoogle Scholar
  7. 7.
    Lee B, Cao R, Choi YS, Cho HY, Rhee AD, Hah CK, Hoyt KR, Obrietan K (2009) The CREB/CRE transcriptional pathway: protection against oxidative stress-mediated neuronal cell death. J Neurochem 108(5):1251–1265. doi: 10.1111/j.1471-4159.2008.05864.x CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Akaike A, Katsuki H, Kume T, Maeda T (1999) Reactive oxygen species in NMDA receptor-mediated glutamate neurotoxicity. Parkinsonism Related Disord 5(4):203–207CrossRefGoogle Scholar
  9. 9.
    Vareille M, Rannou F, Thelier N, Glasser AL, de Sablet T, Martin C, Gobert AP (2008) Heme oxygenase-1 Is a Critical regulator of nitric oxide production in enterohemorrhagic Escherichia coli-infected human enterocytes. J Immunol 180(8):5720–5726. doi: 10.4049/jimmunol.180.8.5720 CrossRefPubMedGoogle Scholar
  10. 10.
    Pae HO, Ae Ha Y, Chai KY, Chung HT (2008) Heme oxygenase-1 attenuates contact hypersensitivity induced by 2,4-dinitrofluorobenzene in mice. Immunopharmacol Immunotoxicol 30(2):207–216. doi: 10.1080/08923970801946824 CrossRefPubMedGoogle Scholar
  11. 11.
    Syapin PJ (2008) Regulation of haeme oxygenase-1 for treatment of neuroinflammation and brain disorders. Br J Pharmacol 155(5):623–640. doi: 10.1038/bjp.2008.342 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lee JW, Choi YJ, Park JH, Sim JY, Kwon YS, Lee HJ, Kim SS, Chun W (2013) 3,4,5-Trihydroxycinnamic acid inhibits lipopolysaccharide-induced inflammatory response through the activation of Nrf2 pathway in BV2 microglial cells. Biomol Ther 21(1):60–65. doi: 10.4062/biomolther.2012.091 CrossRefGoogle Scholar
  13. 13.
    Kensler TW, Wakabayashi N, Biswal S (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu Rev Pharmacol Toxicol 47:89–116. doi: 10.1146/annurev.pharmtox.46.120604.141046 CrossRefPubMedGoogle Scholar
  14. 14.
    Bedogni B, Pani G, Colavitti R, Riccio A, Borrello S, Murphy M, Smith R, Eboli ML, Galeotti T (2003) Redox regulation of cAMP-responsive element-binding protein and induction of manganous superoxide dismutase in nerve growth factor-dependent cell survival. J Biol Chem 278(19):16510–16519. doi: 10.1074/jbc.M301089200 CrossRefPubMedGoogle Scholar
  15. 15.
    Sandberg M, Patil J, D’Angelo B, Weber SG, Mallard C (2014) NRF2-regulation in brain health and disease: implication of cerebral inflammation. Neuropharmacology 79:298–306. doi: 10.1016/j.neuropharm.2013.11.004 CrossRefPubMedGoogle Scholar
  16. 16.
    Jung JS, Shin JA, Park EM, Lee JE, Kang YS, Min SW, Kim DH, Hyun JW, Shin CY, Kim HS (2010) Anti-inflammatory mechanism of ginsenoside Rh1 in lipopolysaccharide-stimulated microglia: critical role of the protein kinase A pathway and hemeoxygenase-1 expression. J Neurochem 115(6):1668–1680. doi: 10.1111/j.1471-4159.2010.07075.x CrossRefPubMedGoogle Scholar
  17. 17.
    Shaywitz AJ, Greenberg ME (1999) CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu Rev Biochem 68:821–861. doi: 10.1146/annurev.biochem.68.1.821 CrossRefPubMedGoogle Scholar
  18. 18.
    Lonze BE, Ginty DD (2002) Function and regulation of CREB family transcription factors in the nervous system. Neuron 35(4):605–623. doi: 10.1016/S0896-6273(02)00828-0 CrossRefPubMedGoogle Scholar
  19. 19.
    Kronke G, Bochkov VN, Huber J, Gruber F, Bluml S, Furnkranz A, Kadl A, Binder BR, Leitinger N (2003) Oxidized phospholipids induce expression of human heme oxygenase-1 involving activation of cAMP-responsive element-binding protein. J Biol Chem 278(51):51006–51014. doi: 10.1074/jbc.M304103200 CrossRefPubMedGoogle Scholar
  20. 20.
    Wen AY, Sakamoto KM, Miller LS (2010) The role of the transcription factor CREB in immune function. J Immunol 185(11):6413–6419. doi: 10.4049/jimmunol.1001829 CrossRefPubMedGoogle Scholar
  21. 21.
    Miyashita K (2009) Function of marine carotenoids. Forum Nutr 61:136–146. doi: 10.1159/000212746 CrossRefPubMedGoogle Scholar
  22. 22.
    Kim KN, Heo SJ, Yoon WJ, Kang SM, Ahn G, Yi TH, Jeon YJ (2010) Fucoxanthin inhibits the inflammatory response by suppressing the activation of NF-kappaB and MAPKs in lipopolysaccharide-induced RAW 264.7 macrophages. Eur J Pharmacol 649(1–3):369–375. doi: 10.1016/j.ejphar.2010.09.032 CrossRefPubMedGoogle Scholar
  23. 23.
    Pangestuti R, Vo TS, Ngo DH, Kim SK (2013) Fucoxanthin ameliorates inflammation and oxidative reponses in microglia. J Agric Food Chem 61(16):3876–3883. doi: 10.1021/jf400015k CrossRefPubMedGoogle Scholar
  24. 24.
    Heo SJ, Yoon WJ, Kim KN, Oh CH, Choi YU, Yoon KT, Kang DH, Qian ZJ, Choi IW, Jung WK (2012) Anti-inflammatory effect of fucoxanthin derivatives isolated from Sargassum siliquastrum in lipopolysaccharide-stimulated RAW 264.7 macrophage. Food Chem Toxicol 50(9):3336–3342. doi: 10.1016/j.fct.2012.06.025 CrossRefPubMedGoogle Scholar
  25. 25.
    Shiratori K, Ohgami K, Ilieva I, Jin XH, Koyama Y, Miyashita K, Yoshida K, Kase S, Ohno S (2005) Effects of fucoxanthin on lipopolysaccharide-induced inflammation in vitro and in vivo. Exp Eye Res 81(4):422–428. doi: 10.1016/j.exer.2005.03.002 CrossRefPubMedGoogle Scholar
  26. 26.
    Choi JH, Kim NH, Kim SJ, Lee HJ, Kim S (2016) Fucoxanthin inhibits the inflammation response in paw edema model through suppressing MAPKs, Akt, and NFkappaB. J Biochem Mol Toxicol 30(3):111–119. doi: 10.1002/jbt.21769 CrossRefPubMedGoogle Scholar
  27. 27.
    Karin M, Delhase M (2000) The IκB kinase (IKK) and NF-κB: key elements of proinflammatory signalling. Semin Immunol 12(1):85–98. doi: 10.1006/smim.2000.0210 CrossRefPubMedGoogle Scholar
  28. 28.
    Lee S, Suk K (2007) Heme oxygenase-1 mediates cytoprotective effects of immunostimulation in microglia. Biochem Pharmacol 74(5):723–729. doi: 10.1016/j.bcp.2007.06.016 CrossRefPubMedGoogle Scholar
  29. 29.
    Pawate S, Shen Q, Fan F, Bhat NR (2004) Redox regulation of glial inflammatory response to lipopolysaccharide and interferongamma. J Neurosci Res 77:540–551CrossRefPubMedGoogle Scholar
  30. 30.
    Zheng J, Piao MJ, Kim KC, Yao CW, Cha JW, Hyun JW (2014) Fucoxanthin enhances the level of reduced glutathione via the Nrf2-mediated pathway in human keratinocytes. Mar Drugs 12(7):4214–4230. doi: 10.3390/md12074214 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Innamorato NG, Rojo AI, Garcia-Yague AJ, Yamamoto M, de Ceballos ML, Cuadrado A (2008) The transcription factor Nrf2 is a therapeutic target against brain inflammation. J Immunol 181(1):680–689. doi: 10.4049/jimmunol.181.1.680 CrossRefPubMedGoogle Scholar
  32. 32.
    Liu SY, Xu P, Luo XL, Hu JF, Liu XH (2016) (7R,8S)-Dehydrodiconiferyl alcohol suppresses lipopolysaccharide-induced inflammatory responses in BV2 microglia by inhibiting MAPK signaling. Neurochem Res 41 (7):1570–1577. doi: 10.1007/s11064-016-1870-8 CrossRefPubMedGoogle Scholar
  33. 33.
    Ziady AG, Sokolow A, Shank S, Corey D, Myers R, Plafker S, Kelley TJ (2012) Interaction with CREB binding protein modulates the activities of Nrf2 and NF-kappaB in cystic fibrosis airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 302(11):L1221–L1231. doi: 10.1152/ajplung.00156.2011 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Dong Zhao
    • 1
    • 2
  • Seung-Hwan Kwon
    • 1
  • Yoon Sun Chun
    • 1
  • Ming-Yao Gu
    • 1
    • 2
  • Hyun Ok Yang
    • 1
    • 2
  1. 1.Natural Product Research CenterKIST Gangneung Institute of Natural ProductsGangneungRepublic of Korea
  2. 2.Department of Biological ChemistryKorea University of Science and Technology (UST)DaejeonRepublic of Korea

Personalised recommendations