Skip to main content

Advertisement

Log in

β-Hydroxybutyrate in the Brain: One Molecule, Multiple Mechanisms

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

β-Hydroxybutyrate (βOHB), a ketone body, is oxidised as a brain fuel. Although its contribution to energy metabolism in the healthy brain is minimal, it is an interesting metabolite which is not only oxidised but also has other direct and collateral effects which make it a molecule of interest for therapeutic purposes. In brain βOHB can be produced in astrocytes from oxidation of fatty acids or catabolism of amino acids and is metabolised in the mitochondria of all brain cell types although uptake across the blood brain barrier is a metabolic control point. βOHB possesses an intrinsic high heat of combustion, making it an efficient mitochondrial fuel, where it can alter the NAD+/NADH and Q/QH2 couples and reduce production of mitochondrial reactive oxygen species. It can directly interact as a signalling molecule influencing opening of K+ channels and regulation of Ca2+ channels. βOHB is an inhibitor of histone deacetylases resulting in upregulation of genes involved in protection against oxidative stress and regulation of metabolism. It interacts with an inflammasome in immune cells to reduce production of inflammatory cytokines and reduce inflammation. Use of βOHB as an efficient neurotherapeutic relies on increasing blood βOHB levels so as to encourage entry of βOHB to the brain. While use of βOHB as a sole therapeutic is currently limited, with employment of a ketogenic diet a more widely used approach, recent development and testing of esterified forms of βOHB have shown great promise, with the approach elevating plasma βOHB while allowing consumption of normal diet. An improved understanding of the mechanisms by which βOHB acts will allow better design of both diet and supplemental interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wakeman A, Dakin H (1909) On the decomposition of β-oxybutyric acid and acetoacetic acid by enzymes of the liver. J Biol Chem 6:373–389

    Google Scholar 

  2. Dedkova EN, Blatter LA (2014) Role of β-hydroxybutyrate, its polymer poly-β-hydroxybutyrate and inorganic polyphosphate in mammalian health and disease. Front Physiol 5:260

    Article  PubMed  PubMed Central  Google Scholar 

  3. Krebs H, Williamson D, Bates MW, Page MA, Hawkins R (1971) The role of ketone bodies in caloric homeostasis. Adv Enzyme Regul 9:387–409

    Article  Google Scholar 

  4. Longo VD, Mattson MP (2014) Fasting: molecular mechanisms and clinical applications. Cell Metab 19:181–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gonzalez SV, Nguyen NHT, Rise F, Hassel B (2005) Brain metabolism of exogenous pyruvate. J Neurochem 95:284–293

    Article  CAS  PubMed  Google Scholar 

  6. Dienel GA (2012) Brain lactate metabolism: the discoveries and the controversies. J Cereb Blood Flow Metab 32:1107–1138

    Article  CAS  PubMed  Google Scholar 

  7. Rae C, Fekete AD, Kashem MA, Nasrallah FA, Bröer S (2012) Metabolism, compartmentation, transport and production of acetate in the cortical brain tissue slice. Neurochem Res 37:2541–2553

    Article  CAS  PubMed  Google Scholar 

  8. Künnecke B, Cerdan S, Seelig J (1993) Cerebral metabolism of [1, 2-13C2] glucose and [U-13C4] 3-hydroxybutyrate in rat brain as detected by 13C NMR spectroscopy. NMR Biomed 6:264–277

    Article  PubMed  Google Scholar 

  9. Edmond J, Robbins R, Bergstrom J, Cole R, De Vellis J (1987) Capacity for substrate utilization in oxidative metabolism by neurons, astrocytes, and oligodendrocytes from developing brain in primary culture. J Neurosci Res 18:551–561

    Article  CAS  PubMed  Google Scholar 

  10. Cahill GF, Veech RL (2003) Ketoacids? Good medicine? Trans Am Clin Climatol Assoc 114:149

    PubMed  PubMed Central  Google Scholar 

  11. Hansen JL, Freier EF (1978) Direct assays of lactate, pyruvate, beta-hydroxybutyrate, and acetoacetate with a centrifugal analyzer. Clin Chem 24:475–479

    CAS  PubMed  Google Scholar 

  12. Owen O, Morgan A, Kemp H, Sullivan J, Herrera M, Cahill G Jr (1967) Brain metabolism during fasting. J Clin Invest 46:1589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mitchell GA, Kassovska-Bratinova S, Boukaftane Y, Robert MF, Wang SP, Ashmarina L, Lambert M, Lapierre P, Potier E (1995) Medical aspects of ketone body metabolism. Clin Invest Med 18:193–216

    CAS  PubMed  Google Scholar 

  14. Laffel L (1999) Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes Metab Res Rev 15:412–426

    Article  CAS  PubMed  Google Scholar 

  15. Pan JW, Rothman DL, Behar KL, Stein DT, Hetherington HP (2000) Human brain β-hydroxybutyrate and lactate increase in fasting-induced ketosis. J Cereb Blood Flow Metab 20:1502–1507

    Article  CAS  PubMed  Google Scholar 

  16. Samala R, Klein J, Borges K (2011) The ketogenic diet changes metabolite levels in hippocampal extracellular fluid. Neurochem Int 58:5–8

    Article  CAS  PubMed  Google Scholar 

  17. Halestrap AP, Meredith D (2004) The SLC16 gene family—from monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflugers Arch 447:619–628

    Article  CAS  PubMed  Google Scholar 

  18. Halestrap AP (2013) Monocarboxylic acid transport. Compr Physiol

  19. Bergersen LH, Magistretti PJ, Pellerin L (2005) Selective postsynaptic co-localisation of MCT2 with AMPA receptor GluR2/3 subunits at excitatory synapses exhibiting AMPA receptor trafficking. Cereb Cortex 15:361–370

    Article  PubMed  Google Scholar 

  20. Rafiki A, Boulland JL, Halestrap AP, Ottersen OP, Bergersen LH (2003) Highly differential expression of the monocarboxylate transporters MCT2 and MCT4 in the developing rat brain. Neurosci 122:677–688

    Article  CAS  Google Scholar 

  21. Broer S, Broer A, Schneider HP, Stegen C, Halestrap AP, Deitmer JW (1999) Characterization of the high-affinity monocarboxylate transporter MCT2 in Xenopus laevis oocytes. Biochem J 341:529–535

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Carpenter L, Halestrap AP (1994) The kinetics, substrate and inhibitor specificity of the lactate transporter of ehrlich-lettre tumor cells studied with the intracellular pH indicator BCECF. Biochem J 304:751–760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fox JEM, Meredith D, Halestrap AP (2000) Characterisation of human monocarboxylate transporter 4 substantiates its role in lactic acid efflux from skeletal muscle. J Physiol 529:285–293

    Article  Google Scholar 

  24. Martin PM, Gopal E, Ananth S, Zhuang L, Itagaki S, Prasad BM, Smith SB, Prasad PD, Ganapathy V (2006) Identify of SMCT1(SLC5A8) as a neuron-specific Na+-coupled transporter for active uptake of L-lactate and ketone bodies in the brain. J Neurochem 98:279–288

    Article  CAS  PubMed  Google Scholar 

  25. Gopal E, Umapathy NS, Martin PM, Ananth S, Gnana-Prakasam JP, Becker H, Wagner CA, Ganapathy V, Prasad PD (2007) Cloning and functional characterization of human SMCT2 (SLC5A12) and expression pattern of the transporter in kidney. Biochim Et Biophys Acta Biomembr 1768:2690–2697

    Article  CAS  Google Scholar 

  26. Tildon JT, McKenna MC, Stevenson JH Jr (1994) Transport of 3-hydroxybutyrate by cultured rat brain astrocytes. Neurochem Res 19:1237–1242

    Article  CAS  PubMed  Google Scholar 

  27. Leino RL, Gerhart DZ, Duelli R, Enerson BE, Drewes LR (2001) Diet-induced ketosis increases monocarboxylate transporter (MCT1) levels in rat brain. Neurochem Int 38:519–527

    Article  CAS  PubMed  Google Scholar 

  28. Regen DM, Callis JT, Sugden MC (1983) Studies of cerebral β-hydroxybutyrate transport by carotid injection; effects of age, diet and injectant composition. Brain Res 271:289–299

    Article  CAS  PubMed  Google Scholar 

  29. Puchowicz MA, Xu K, Sun X, Ivy A, Emancipator D, LaManna JC (2007) Diet-induced ketosis increases capillary density without altered blood flow in rat brain. Am J Physiol Endocrinol Metab 292:E1607

    Article  CAS  PubMed  Google Scholar 

  30. Mikkelsen KH, Seifert T, Secher NH, Grøndal T, van Hall G (2014) Systemic, cerebral and skeletal muscle ketone body and energy metabolism during acute hyper-D-β-hydroxybutyratemia in post-absorptive healthy males. J Clin Endocrinol Metab 100:636–643

    Article  PubMed  CAS  Google Scholar 

  31. Courchesne-Loyer A, Croteau E, Castellano C-A, St-Pierre V, Hennebelle M, Cunnane SC (2016) Inverse relationship between brain glucose and ketone metabolism in adults during short-term moderate dietary ketosis: a dual tracer quantitative positron emission tomography study. J Cereb Blood Flow Metab. doi:10.1177/0271678X16669366

  32. Hawkins RA, Mans AM, Davis DW (1986) Regional ketone body utilization by rat brain in starvation and diabetes. Am J Physiol Endocrinol Metab 250:E169

    CAS  Google Scholar 

  33. Ito K, Uchida Y, Ohtsuki S, Aizawa S, Kawakami H, Katsukura Y, Kamiie J, Terasaki T (2011) Quantitative membrane protein expression at the blood–brain barrier of adult and younger cynomolgus monkeys. J Pharm Sci 100:3939–3950

    Article  CAS  PubMed  Google Scholar 

  34. Gerhart DZ, Enerson BE, Zhdankina OY, Leino RL, Drewes LR (1997) Expression of monocarboxylate transporter MCT1 by brain endothelium and glia in adult and suckling rats. Am J Physiol Endocrinol Metab 273:E207–E213

    CAS  Google Scholar 

  35. Vannucci SJ, Simpson IA (2003) Developmental switch in brain nutrient transporter expression in the rat. Am J Physiol Endocrinol Metab 285:E1127–E1134

    Article  CAS  PubMed  Google Scholar 

  36. Uchida Y, Ohtsuki S, Katsukura Y, Ikeda C, Suzuki T, Kamiie J, Terasaki T (2011) Quantitative targeted absolute proteomics of human blood–brain barrier transporters and receptors. J Neurochem 117:333–345

    Article  CAS  PubMed  Google Scholar 

  37. Halestrap AP (1978) Pyruvate and ketone-body transport across the mitochondrial membrane. Exchange properties, pH-dependence and mechanism of the carrier. Biochem J 172:377–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Paradies G, Papa S (1997) On the kinetics and substrate specificity of the pyruvate translocator in rat liver mitochondria. Biochim Et Biophys Acta Bioenerg 462:333–346

    Article  Google Scholar 

  39. Booth RF, Clark JB (1981) Energy metabolism in rat brain: inhibition of pyruvate decarboxylation by 3-hydroxybutyrate in neonatal mitochondria. J Neurochem 37:179–185

    Article  CAS  PubMed  Google Scholar 

  40. Veech RL (2004) The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandin Leukotriene Essent Fatty Acid 70:309–319

    Article  CAS  Google Scholar 

  41. Sato K, Kashiwaya Y, Keon C, Tsuchiya N, King M, Radda G, Chance B, Clarke K, Veech R (1995) Insulin ketone bodies, and mitochondrial energy transduction. FASEB J 9:651–658

    CAS  PubMed  Google Scholar 

  42. Klee CB, Sokoloff L (1967) Changes in d(−)-β-hydroxybutyric dehydrogenase activity during brain maturation in the rat. J Biol Chem 242:3880–3883

    CAS  PubMed  Google Scholar 

  43. Latruffe N, Gaudemer Y (1974) Propriétés et mécanisme cinétique de la D(−)β-hydroxybutyrique déshydrogénase de particules sous-mitochondriales de foie de rat; Effets comparés de différents agents thiols. Biochimie 56:435–444

    Article  CAS  PubMed  Google Scholar 

  44. Rardin MJ, Newman JC, Held JM, Cusack MP, Sorensen DJ, Li B, Schilling B, Mooney SD, Kahn CR, Verdin E (2013) Label-free quantitative proteomics of the lysine acetylome in mitochondria identifies substrates of SIRT3 in metabolic pathways. Proc Natl Acad Sci USA 110:6601–6606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hebert AS, Dittenhafer-Reed KE, Yu W, Bailey DJ, Selen ES, Boersma MD, Carson JJ, Tonelli M, Balloon AJ, Higbee AJ, Westphall MS, Pagliarini DJ, Prolla TA, Assadi-Porter F, Roy S, Denu JM Coon JJ (2013) Calorie restriction and SIRT3 trigger global reprogramming of the mitochondrial protein acetylome. Mol Cell 49:186–199

    Article  CAS  PubMed  Google Scholar 

  46. Guo K, Lukacik P, Papagrigoriou E, Meier M, Lee WH, Adamski J, Oppermann U (2006) Characterization of human DHRS6, an orphan short chain dehydrogenase/reductase enzyme: a novel, cytosolic type 2 R-beta-hydroxybutyrate dehydrogenase. J Biol Chem 281:10291–10297

    Article  CAS  PubMed  Google Scholar 

  47. Chang HT, Olson LK, Schwartz KA (2013) Ketolytic and glycolytic enzymatic expression profiles in malignant gliomas: implication for ketogenic diet therapy. Nutr Metab 10:1

    Article  CAS  Google Scholar 

  48. Bixel MG, Hamprecht B (1995) Generation of ketone bodies from leucine by cultured astroglial cells. J Neurochem 65:2450–2461

    Article  CAS  PubMed  Google Scholar 

  49. Puisac B, Ramos M, Arnedo M, Menao S, Gil-Rodríguez MC, Teresa-Rodrigo ME, Pié A, de Karam JC, Wesselink J-J, Giménez I, Ramos FJ, Casals N, Gómez-Puertas P, Hegardt FG, Pié J (2012) Characterization of splice variants of the genes encoding human mitochondrial HMG-CoA lyase and HMG-CoA synthase, the main enzymes of the ketogenesis pathway. Mol Biol Rep 39:4777–4785

    Article  CAS  PubMed  Google Scholar 

  50. Fukao T, Song X-Q, Mitchell GA, Yamaguchi S, Sukegawa K, Or T, Kondo N (1997) Enzymes of ketone body utilization in human tissues: protein and messenger RNA levels of succinyl-coenzyme A (CoA):3-ketoacid CoA transferase and mitochondrial and cytosolic acetoacetyl-CoA thiolases. Pediatr Res 42:498–502

    Article  CAS  PubMed  Google Scholar 

  51. Ohnuki M, Takahashi N, Yamasaki M, Fukui T (2005) Different localization in rat brain of the novel cytosolic ketone body-utilizing enzyme, acetoacetyl-CoA synthetase, as compared to succinyl-CoA:3-oxoacid CoA-transferase. Biochim Et Biophys Acta 1729:147–153

    Article  CAS  Google Scholar 

  52. Endemann G, Goetz PG, Edmond J, Brunengraber H (1982) Lipogenesis from ketone bodies in the isolated perfused rat liver. Evidence for the cytosolic activation of acetoacetate. J Biol Chem 257:3434–3440

    CAS  PubMed  Google Scholar 

  53. Hasegawa S, Kume H, Iinuma S, Yamasaki M, Takahashi N, Fukui T (2012) Acetoacetyl-CoA synthetase is essential for normal neuronal development. Biochem Biophys Res Commun 427:398–403

    Article  CAS  PubMed  Google Scholar 

  54. Tildon JT, Cornblath M (1972) Succinyl-CoA: 3-ketoacid CoA-transferase deficiency. A cause for ketoacidosis in infancy. J Clin Invest 51:493–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fukao T, Sass JO, Kursula P, Thimm E, Wendel U, Ficicioglu C, Monastiri K, Guffon N, Barić I, Zabot MT, Kondo N (2011) Clinical and molecular characterization of five patients with succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency. Biochim Et Biophys Acta 1812:619–624

    Article  CAS  Google Scholar 

  56. Fukao T, Mitchell GA, Song X-Q, Nakamura H, Kassovska-Bratinova S, Orii KE, Wraith JE, Besley G, Wanders RJA, Niezen-Koning KE, Berry GT, Palmieri M, Kondo N (2000) Succinyl-CoA:3-ketoacid CoA transferase (SCOT): cloning of the human SCOT gene, tertiary structural modeling of the human SCOT monomer, and characterization of three pathogenic mutations. Genomics 68:144–151

    Article  CAS  PubMed  Google Scholar 

  57. Berry G, Fukao T, Mitchell G, Mazur A, Ciafre M, Gibson J, Kondo N, Palmieri M (2001) Neonatal hypoglycaemia in severe succinyl-CoA: 3-oxoacid CoA-transferase deficiency. J Inherit Metab Dis 24:587–595

    Article  CAS  PubMed  Google Scholar 

  58. Gibson K, Breuer J, Nyhan W (1988) 3-Hydroxy-3-methylglutaryl-coenzyme A lyase deficiency: review of 18 reported patients. Eur J Pediatr 148:180–186

    Article  CAS  PubMed  Google Scholar 

  59. Van der Knaap M, Bakker H, Valk J (1998) MR imaging and proton spectroscopy in 3-hydroxy-3-methylglutaryl coenzyme A lyase deficiency. Am J Neuroradiol 19:378–382

    PubMed  Google Scholar 

  60. Gordon K, Riding M, Camfield P, Bawden H, Ludman M, Bagnell P (1994) CT and MR of 3-hydroxy-3-methylglutaryl-coenzyme A lyase deficiency. Am J Neuroradiol 15:1474–1476

    CAS  PubMed  Google Scholar 

  61. Fukao T, Scriver CR, Kondo N; Group TCW (2001) The clinical phenotype and outcome of mitochondrial acetoacetyl-CoA thiolase deficiency (β-ketothiolase or T2 deficiency) in 26 enzymatically proved and mutation-defined patients. Mol Genet Metab 72:109–114

    Article  CAS  PubMed  Google Scholar 

  62. Bennett M, Hosking G, Smith M, Gray R, Middleton B (1984) Biochemical investigations on a patient with a defect in cytosolic acetoacetyl-CoA thiolase, associated with mental retardation. J Inherit Metab Dis 7:125–128

    Article  CAS  PubMed  Google Scholar 

  63. Hawkins R, Williamson D, Krebs H (1971) Ketone-body utilization by adult and suckling rat brain in vivo. Biochem J 122:13–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Sokoloff L (1973) Metabolism of ketone bodies by the brain. Annu Rev Med 24:271–280

    Article  CAS  PubMed  Google Scholar 

  65. Cahill GFJ (2006) Fuel metabolism in starvation. Annu Rev Nutr 26:1–22

    Article  CAS  PubMed  Google Scholar 

  66. DeVivo DC, Leckie MP, Agrawal HC (1973) The differential incorporation of β-hydroxybutyrate and glucose into brain glutamate in the newborn rat. Brain Res 55:485–490

    Article  CAS  PubMed  Google Scholar 

  67. Nehlig A (2004) Brain uptake and metabolism of ketone bodies in animal models. Prostaglandin Leukotriene Essent Fatty Acid 70:265–275

    Article  CAS  Google Scholar 

  68. Hotta SS (1962) Glucose metabolism in brain tissue: the hexose monophosphate shunt and its role in glutathione reduction. J Neurochem 9:43–51

    Article  CAS  PubMed  Google Scholar 

  69. Bilger A, Nehlig A (1992) Quantitative histochemical changes in enzymes involved in energy metabolism in the rat brain during postnatal development 2. Glucose-6-phosphate dehydrogenase and beta-hydroxybutyrate dehydrogenase. Int J Dev Neurosci 10:143–152

    Article  CAS  PubMed  Google Scholar 

  70. Nehlig A, de Vasconcelos AP (1993) Glucose and ketone body utilization by the brain of neonatal rats. Prog Neurobiol 40:163–220

    Article  CAS  PubMed  Google Scholar 

  71. Rho JM, Stafstrom CE (2012) The ketogenic diet as a treatment paradigm for diverse neurological disorders. Front Pharmacol 3:59

    PubMed  PubMed Central  Google Scholar 

  72. Maalouf M, Rho JM, Mattson MP (2009) The neuroprotective properties of calorie restriction, the ketogenic diet, and ketone bodies. Brain Res Rev 59:293–315

    Article  CAS  PubMed  Google Scholar 

  73. McKenna MC, Tildon JT, Stevenson JH, Boatright R, Huang S (1993) Regulation of energy metabolism in synaptic terminals and cultured rat brain astrocytes: differences revealed using aminooxyacetate. Dev Neurosci 15:320–329

    Article  CAS  PubMed  Google Scholar 

  74. Chechik T, Roeder L, Tildon J, Poduslo S (1987) Ketone body enzyme activities in purified neurons, astrocytes and oligodendroglia. Neurochem Int 10:95–99

    Article  CAS  PubMed  Google Scholar 

  75. Berl S, Frigyesi TL (1969) Turnover of glutamate glutamine aspartate and GABA labeled with 1-14C acetate in caudate nucleus thalamus and motor cortex (cat). Brain Res 12:444–455

    Article  CAS  PubMed  Google Scholar 

  76. Berl S, Nicklas WJ, Clarke DD (1970) Compartmentation of citric acid cycle metabolism in brain-labeilling of glutamate, glutamine, aspartate and GABA by several radioactive tracer metabolites. J Neurochem 17:1009–1015

    Article  CAS  PubMed  Google Scholar 

  77. Cremer JE (1971) Incorporation of label from d-β-hydroxy-[14C] butyrate and [3-14C] acetoacetate into amino acids in rat brain in vivo. Biochem J 122:135–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pan JW, de Graaf RA, Petersen KF, Shulman GI, Hetherington HP, Rothman DL (2002) [2,4-13C2]-hydroxybutyrate metabolism in human brain. J Cereb Blood Flow Metab 22:890–898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Leong SF, Lai JCK, Lim L, Clark JB (1981) Energy-metabolising enzymes in brain regions of adult and aging rats. J Neurochem 37:1548–1556

    Article  CAS  PubMed  Google Scholar 

  80. Williamson D, Bates MW, Page MA, Krebs H (1971) Activities of enzymes involved in acetoacetate utilization in adult mammalian tissues. Biochem J 121:41–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Page MA, Williamson D (1971) Enzymes of ketone-body utilisation in human brain. Lancet 298:66–68

    Article  Google Scholar 

  82. Nugent S, Tremblay S, Chen KW, Ayutyanont N, Roontiva A, Castellano C-A, Fortier M, Roy M, Courchesne-Loyer A, Bocti C (2014) Brain glucose and acetoacetate metabolism: a comparison of young and older adults. Neurobiol Aging 35:1386–1395

    Article  CAS  PubMed  Google Scholar 

  83. Blomqvist G, Thorell J, Ingvar M, Grill V, Widen L, Stone-Elander S (1995) Use of R-beta-[1-11C] hydroxybutyrate in PET studies of regional cerebral uptake of ketone bodies in humans. Am J Physiol Endocrinol Metab 269:E948–E959

    CAS  Google Scholar 

  84. Hawkins RA, Biebuyck JF (1979) Ketone bodies are selectively used by individual brain regions. Science 205:325–327

    Article  CAS  PubMed  Google Scholar 

  85. Gesink DS, Wilson JE A (1985) Histochemical study of the distribution of β-hydroxybutyrate dehydrogenase in developing rat cerebellum. J Neurochem 44:1308–1311

    Article  CAS  PubMed  Google Scholar 

  86. Arakawa T, Goto T, Okada Y (1991) Effect of ketone body (D-3-hydroxybutyrate) on neural activity and energy metabolism in hippocampal slices of the adult guinea pig. Neurosci Lett 130:53–56

    Article  CAS  PubMed  Google Scholar 

  87. Wada H, Okada Y, Nabetani M, Nakamura H (1997) The effects of lactate and beta-hydroxybutyrate on the energy metabolism and neural activity of hippocampal slices from adult and immature rat. Dev Brain Res 101:1–7

    Article  CAS  Google Scholar 

  88. Weiss JN, Lamp ST (1989) Cardiac ATP-sensitive K+ channels. Evidence for preferential regulation by glycolysis. J Gen Physiol 94:911–935

    Article  CAS  PubMed  Google Scholar 

  89. Dhar-Chowdhury P, Harrell MD, Han SY, Jankowska D, Parachuru L, Morrissey A, Srivastava S, Liu W, Malester B, Yoshida H (2005) The glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase, triose-phosphate isomerase, and pyruvate kinase are components of the KATP channel macromolecular complex and regulate its function. J Biol Chem 280:38464–38470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Silver IA, Deas J, Erecinska M (1997) Ion homeostasis in brain cells: differences in intracellular ion reponses to energy limitation between cultured neurons and glial cells. Neuroscience 78:598–601

    Article  Google Scholar 

  91. Chowdhury GM, Jiang L, Rothman DL, Behar KL (2014) The contribution of ketone bodies to basal and activity-dependent neuronal oxidation in vivo. J Cereb Blood Flow Metab 34:1233–1242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Wieland O, Funcke Hv, Löffler G (1971) Interconversion of pyruvate dehydrogenase in rat heart muscle upon perfusion with fatty acids or ketone bodies. FEBS Lett 15:295–298

    Article  CAS  PubMed  Google Scholar 

  93. Newsholme EA, Randle PJ, Manchester KL (1962) Inhibition of the phosphofructokinase reaction in perfused rat heart by respiration of ketone bodies, fatty acids and pyruvate. Nature 193:270–271

    Article  CAS  PubMed  Google Scholar 

  94. Tildon JT, Roeder LM, Stevenson JH (1985) Substrate oxidation by isolated rat brain mitochondria and synaptosomes. J Neurosci Res 14:207–215

    Article  CAS  PubMed  Google Scholar 

  95. Marosi K, Kim SW, Moehl K, Scheibye-Knudsen M, Cheng A, Cutler R, Camandola S, Mattson MP (2016) 3-Hydroxybutyrate regulates energy metabolism and induces BDNF expression in cerebral cortical neurons. J Neurochem. doi:10.1111/jnc.13868

    PubMed  Google Scholar 

  96. Erecinska M, Nelson D, Daikhin Y, Yudkoff M (1996) Regulation of GABA level in rat brain synaptosomes: fluxes through enzymes of the GABA shunt and effects of glutamate, calcium and ketone bodies. J Neurochem 67:2325–2334

    Article  CAS  PubMed  Google Scholar 

  97. Yudkoff M, Daikhin Y, Nissim I, Grunstein R, Nissim I (1997) Effects of ketone bodies on astrocyte amino acid metabolism. J Neurochem 69:682–692

    Article  CAS  PubMed  Google Scholar 

  98. McKenna MC, Tildon JT, Stevenson J, Huang X, Kingwell KG (1995) Regulation of mitochondrial and cytosolic malic enzymes from cultured rat brain astrocytes. Neurochem Res 20:1491–1501

    Article  CAS  PubMed  Google Scholar 

  99. Lajtha A, Gibson G, Dienel G (2007) Handbook of neurochemistry and molecular neurobiology. Neuroactive proteins and peptides. Springer, Springer-Verlag

    Book  Google Scholar 

  100. Amaral AI, Teixeira AP, Sonnewald U, Alves PM (2011) Estimation of intracellular fluxes in cerebellar neurons after hypoglycemia: importance of the pyruvate recycling pathway and glutamine oxidation. J Neurosci Res 89:700–710

    Article  CAS  PubMed  Google Scholar 

  101. Lund TM, Risa O, Sonnewald U, Schousboe A, Waagepetersen HS (2009) Availability of neurotransmitter glutamate is diminished when beta-hydroxybutyrate replaces glucose in cultured. J Neurochem 110:80–91

    Article  CAS  PubMed  Google Scholar 

  102. Cruz NF, Lasater A, Zielke HR, Dienel GA (2005) Activation of astrocytes in brain of conscious rats during acoustic stimulation: acetate utilization in working brain. J Neurochem 92:934–947

    Article  CAS  PubMed  Google Scholar 

  103. Nicklas WJ, Youngster SK, Kindt MV, Heikkila RE IV (1987) MPTP, MPP+ and mitochondrial function. Life Sci 40:721–729

    Article  CAS  PubMed  Google Scholar 

  104. Tieu K, Perier C, Caspersen C, Teismann P, Wu D-C, Yan S-D, Naini A, Vila M, Jackson-Lewis V, Ramasamy R (2003) D-β-Hydroxybutyrate rescues mitochondrial respiration and mitigates features of Parkinson disease. J Clin Invest 112:892–901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Edwards C, Canfield J, Copes N, Rehan M, Lipps D, Bradshaw PC (2014) D-beta-hydroxybutyrate extends lifespan in C. elegans. Aging 6:621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhao Z, Lange DJ, Voustianiouk A, MacGrogan D, Ho L, Suh J, Humala N, Thiyagarajan M, Wang J, Pasinetti GM (2006) A ketogenic diet as a potential novel therapeutic intervention in amyotrophic lateral sclerosis. BMC Neurosci 7:1

    Article  CAS  Google Scholar 

  107. Kashiwaya Y, Takeshima T, Mori N, Nakashima K, Clarke K, Veech RL (2000) d-β-Hydroxybutyrate protects neurons in models of Alzheimer’s and Parkinson’s disease. Proc Natl Acad Sci USA 97:5440–5444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Julio-Amilpas A, Montiel T, Soto-Tinoco E, Gerónimo-Olvera C, Massieu L (2015) Protection of hypoglycemia-induced neuronal death by β-hydroxybutyrate involves the preservation of energy levels and decreased production of reactive oxygen species. J Cereb Blood Flow Metab 35:851–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. McKenna M, Tildon J, Stevenson J, Hopkins I (1994) Energy metabolism in cortical synaptic terminals from weanling and mature rat brain: evidence for multiple compartments of tricarboxylic acid cycle activity. Dev Neurosci 16:291–300

    Article  CAS  PubMed  Google Scholar 

  110. Lund TM, Ploug KB, Iversen A, Jensen AA, Jansen-Olesen I (2015) The metabolic impact of β-hydroxybutyrate on neurotransmission: reduced glycolysis mediates changes in calcium responses and KATP channel receptor sensitivity. J Neurochem 132:520–531

    CAS  PubMed  Google Scholar 

  111. Ma W, Berg J, Yellen G (2007) Ketogenic diet metabolites reduce firing in central neurons by opening KATP channels. J Neurosci 27:3618–3625

    Article  CAS  PubMed  Google Scholar 

  112. Giménez-Cassina A, Martínez-François Juan R, Fisher Jill K, Szlyk B, Polak K, Wiwczar J, Tanner Geoffrey R, Lutas A, Yellen G (2012) Danial Nika N BAD-dependent regulation of fuel metabolism and KATP channel activity confers resistance to epileptic seizures. Neuron 74:719–730

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Xiao X-Q, Zhao Y, Chen G-Q (2007) The effect of 3-hydroxybutyrate and its derivatives on the growth of glial cells. Biomaterials 28:3608–3616

    Article  CAS  PubMed  Google Scholar 

  114. Kimura I, Inoue D, Maeda T, Hara T, Ichimura A, Miyauchi S, Kobayashi M, Hirasawa A, Tsujimoto G (2011) Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41). Proc Natl Acad Sci USA 108:8030–8035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Won Y-J, Lu VB, Puhl HL, Ikeda SR (2013) β-Hydroxybutyrate modulates N-type calcium channels in rat sympathetic neurons by acting as an agonist for the G-protein-coupled receptor FFA3. J Neurosci 33:19314–19325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Shimazu T, Hirschey MD, Newman J, He W, Shirakawa K, Le Moan N, Grueter CA, Lim H, Saunders LR, Stevens RD (2013) Suppression of oxidative stress by β-hydroxybutyrate, an endogenous histone deacetylase inhibitor. Science 339:211–214

    Article  CAS  PubMed  Google Scholar 

  117. Mejía-Toiber J, Montiel T, Massieu L (2006) D-β-hydroxybutyrate prevents glutamate-mediated lipoperoxidation and neuronal damage elicited during glycolysis inhibition in vivo. Neurochem Res 31:1399–1408

    Article  PubMed  CAS  Google Scholar 

  118. Yamada T, Zhang S-J, Westerblad H, Katz A (2010) β-Hydroxybutyrate inhibits insulin-mediated glucose transport in mouse oxidative muscle. Am J Physiol Endocrinol Metab 299:E364–E373

    Article  CAS  PubMed  Google Scholar 

  119. Youm Y-H, Nguyen KY, Grant RW, Goldberg EL, Bodogai M, Kim D, D’Agostino D, Planavsky N, Lupfer C, Kanneganti TD, Kang S, Horvath TL, Fahmy TM, Crawford PA, Biragyn A, Alnemri E, Dixit VD (2015) Ketone body β-hydroxybutyrate blocks the NLRP3 inflammasome-mediated inflammatory disease. Nat Med 21:263–269

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Tschopp J, Schroder K (2010) NLRP3 inflammasome activation: the convergence of multiple signalling pathways on ROS production? Nat Rev Immunol 10:210–215

    Article  CAS  PubMed  Google Scholar 

  121. Shao B-Z, Xu Z-Q, Han B-Z, Su D-F, Liu C (2015) NLRP3 inflammasome and its inhibitors: a review. Front Pharmacol 6:262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Lee G-S, Subramanian N, Kim AI, Aksentijevich I, Goldbach-Mansky R, Sacks DB, Germain RN, Kastner DL, Chae JJ (2012) The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature 492:123–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Frahm J, Merboldt KD, Hanicke W (1987) Localized proton spectroscopy using stimulated echoes. J Magn Reson 72:502–508

    CAS  Google Scholar 

  124. Kreis R, Ross B (1992) Cerebral metabolic disturbances in patients with subacute and chronic diabetes mellitus: detection with proton MR spectroscopy. Radiology 184:123–130

    Article  CAS  PubMed  Google Scholar 

  125. Plecko B, Stoeckler-Ipsiroglu S, Schober E, Harrer G, Mlynarik V, Gruber S, Moser E, Moeslinger D, Silgoner H, Ipsiroglu O (2002) Oral &bgr;-hydroxybutyrate supplementation in two patients with hyperinsulinemic hypoglycemia: monitoring of &bgr;-hydroxybutyrate levels in blood and cerebrospinal fluid, and in the brain by in vivo magnetic resonance spectroscopy. Pediatric Res 52:301–306

    CAS  Google Scholar 

  126. Shen J, Novotny EJ, Rothman DL (1998) In vivo lactate and β-hydroxybutyrate editing using a pure-phase refocusing pulse train. Magn Reson Med 40:783–788

    Article  CAS  PubMed  Google Scholar 

  127. Ordidge R, Connelly A, Lohman J (1969) Image-selected in vivo spectroscopy (ISIS). A new technique for spatially selective NMR spectroscopy. J Magn Reson 66:283–294

    Google Scholar 

  128. Wootton-Gorges SL, Buonocore MH, Kuppermann N, Marcin J, DiCarlo J, Neely EK, Barnes PD, Glaser N (2005) Detection of cerebral β-hydroxy butyrate, acetoacetate, and lactate on proton MR spectroscopy in children with diabetic ketoacidosis. Am J Neuroradiol 26:1286–1291

    PubMed  Google Scholar 

  129. Cecil KM, Mulkey SB, Ou X, Glasier CM (2015) Brain ketones detected by proton magnetic resonance spectroscopy in an infant with Ohtahara syndrome treated with ketogenic diet. Pediatr Radiol 45:133–137

    Article  PubMed  Google Scholar 

  130. Mescher M, Merkle H, Kirsch J, Garwood M, Gruetter R (1998) Simultaneous in vivo spectral editing and water suppression. NMR Biomed 11:266–272

    Article  CAS  PubMed  Google Scholar 

  131. Edden RAE, Harris AD, Murphy K, Evans CJ, Saxena N, Hall JE, Bailey DM, Wise RG (2010) Edited MRS is sensitive to changes in lactate concentration during inspiratory hypoxia. J Magn Reson Imag 32:320–325

    Article  Google Scholar 

  132. Courchesne-Loyer A, Fortier M, Tremblay-Mercier J, Chouinard-Watkins R, Roy M, Nugent S, Castellano C-A, Cunnane SC (2013) Stimulation of mild, sustained ketonemia by medium-chain triacylglycerols in healthy humans: estimated potential contribution to brain energy metabolism. Nutrition 29:635–640

    Article  CAS  PubMed  Google Scholar 

  133. Reger MA, Henderson ST, Hale C, Cholerton B, Baker LD, Watson G, Hyde K, Chapman D, Craft S (2004) Effects of β-hydroxybutyrate on cognition in memory-impaired adults. Neurobiol Aging 25:311–314

    Article  CAS  PubMed  Google Scholar 

  134. Clarke K, Tchabanenko K, Pawlosky R, Carter E, King MT, Musa-Veloso K, Ho M, Roberts A, Robertson J, VanItallie TB (2012) Kinetics, safety and tolerability of (R)-3-hydroxybutyl (R)-3-hydroxybutyrate in healthy adult subjects. Regul Toxicol Pharmacol 63:401–408

    Article  CAS  PubMed  Google Scholar 

  135. Newport MT, VanItallie TB, Kashiwaya Y, King MT, Veech RL (2015) A new way to produce hyperketonemia: use of ketone ester in a case of Alzheimer’s disease. Alzheimers Dement 11:99–103

    Article  PubMed  Google Scholar 

  136. Hertz L, Chen Y, Waagepetersen HS (2015) Effects of ketone bodies in Alzheimer’s disease in relation to neural hypometabolism, β-amyloid toxicity, and astrocyte function. J Neurochem 134:7–20

    Article  CAS  PubMed  Google Scholar 

  137. Orhan N, Ugur Yilmaz C, Ekizoglu O, Ahishali B, Kucuk M, Arican N, Elmas I, Gürses C, Kaya M (2016) Effects of beta-hydroxybutyrate on brain vascular permeability in rats with traumatic brain injury. Brain Res 1631:113–126

    Article  CAS  PubMed  Google Scholar 

  138. Jarrett SG, Milder JB, Liang LP, Patel M (2008) The ketogenic diet increases mitochondrial glutathione levels. J Neurochem 106:1044–1051

    Article  CAS  PubMed  Google Scholar 

  139. Prins M, Fujima L, Hovda D (2005) Age-dependent reduction of cortical contusion volume by ketones after traumatic brain injury. J Neurosci Res 82:413–420

    Article  CAS  PubMed  Google Scholar 

  140. Bröer S, Schneider HP, Bröer A, Rahman B, Hamprecht B, Deitmer JW (1998) Characterization of the monocarboxylate transporter 1 expressed in Xenopus laevis oocytes by changes in cytosolic pH. Biochem J 333:167–174

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ben Rowlands of Neuroscience Research Australia and Don Thomas of the UNSW Mark Wainwright Analytical Centre for their assistance in the preparation of this manuscript. The authors would like to acknowledge the lifetime commitment of Professor Mary McKenna to the pursuit of scientific excellence and education in neurochemistry and to dedicate this article to her contributions to this field. We have greatly enjoyed and also benefitted from our interactions over the years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline D. Rae.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Achanta, L.B., Rae, C.D. β-Hydroxybutyrate in the Brain: One Molecule, Multiple Mechanisms. Neurochem Res 42, 35–49 (2017). https://doi.org/10.1007/s11064-016-2099-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-2099-2

Keywords

Navigation