Neurochemical Research

, Volume 42, Issue 2, pp 415–427 | Cite as

Improved Proliferative Capacity of NP-Like Cells Derived from Human Mesenchymal Stromal Cells and Neuronal Transdifferentiation by Small Molecules

  • Alejandro Aguilera-Castrejon
  • Herminia Pasantes-Morales
  • Juan José Montesinos
  • Lorena V. Cortés-Medina
  • Marta E. Castro-Manrreza
  • Héctor Mayani
  • Gerardo Ramos-MandujanoEmail author
Original Paper


Neural progenitors (NP), found in fetal and adult brain, differentiate into neurons potentially able to be used in cell replacement therapies. This approach however, raises technical and ethical problems which limit their potential therapeutic use. Alternately, NPs can be obtained by transdifferentiation of non-neural somatic cells evading these difficulties. Human bone marrow mesenchymal stromal cells (MSCs) are suggested to transdifferentiate into NP-like cells, which however, have a low proliferation capacity. The present study demonstrates the requisite of cell adhesion for proliferation and survival of NP-like cells and re-evaluates some neuronal features after differentiation by standard procedures. Mature neuronal markers, though, were not detected by these procedures. A chemical differentiation approach was used in this study to convert MSCs-derived NP-like cells into neurons by using a cocktail of six molecules, CHIR99021, I-BET151, RepSox, DbcAMP, forskolin and Y-27632, defined after screening combinations of 22 small molecules. Direct transdifferentiation of MSCs into neuronal cells was obtained with the small molecule cocktail, without requiring the NP-like intermediate stage.


Mesenchymal stromal cells Neural progenitor cells Transdifferentiation Cell proliferation Neuronal reprogramming Small molecules 



This work was supported by the Dirección General de Asuntos del Personal Académico (DGAPA), Universidad Nacional Autónoma de México (UNAM) (H.P.M. and G.R.M., Grant No. IN205916). We are indebted to the National Council of Science and Technology (CONACYT) for support to J.J.M.M. (Grant No. 258205), IMSS support to J.J.M.M. (Grant No. 1311), and CONACYT Red temática células troncales y medicina regenerative (Grant No. 271609). A.A.C. acknowledge the financial support provided by the “Ayudante de Investigador Nacional Emérito” fellowship of CONACYT (Núm. Exp. 10802). We thank QFB Carlos Castellanos Barba from the flow-cytometry unit at the Instituto de Investigaciones Biomédicas for his expert technical assistance in flow cytometry protocols. We also thank Dr. Laura Ongay Larios from the molecular biology unit at the Instituto de Fisiología Celular for her assistance with qPCR.

Author Contributions

A.A.C. conception and design, collection and/or assembly of data, data analysis and interpretation, figure preparation, manuscript writing and final approval of manuscript. H.P.M. Conception and design, financial support, manuscript writing, and final approval of manuscript. L.V.C.M. collection and/or assembly of data and data analysis and interpretation. J.J.M. Provision of study material, financial support, and final approval of manuscript; M.E.C.M. Provision of study material and collection and assembly of data; H.M. Financial support and final approval of manuscript; G.R.M. conception and design, collection and/or assembly of data, data analysis and interpretation, figure preparation, financial support, manuscript writing and final approval of manuscript.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

11064_2016_2086_MOESM1_ESM.pdf (320 kb)
Supplementary material 1 (PDF 319 KB)
11064_2016_2086_MOESM2_ESM.xlsx (28 kb)
Supplementary material 2 (XLSX 27 KB)


  1. 1.
    Martino G, Pluchino S (2006) The therapeutic potential of neural stem cells. Nat Rev Neurosci 7(5):395–406. doi: 10.1038/nrn1908 CrossRefPubMedGoogle Scholar
  2. 2.
    Harris L, Zalucki O, Piper M et al (2016) Insights into the biology and therapeutic applications of neural stem cells. Stem Cells Int 2016:9745315. doi: 10.1155/2016/9745315 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Hernandez-Benitez R, Vangipuram SD, Ramos-Mandujano G et al. (2013) Taurine enhances the growth of neural precursors derived from fetal human brain and promotes neuronal specification. Dev Neurosci 35(1):40–49. doi: 10.1159/000346900 CrossRefPubMedGoogle Scholar
  4. 4.
    Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255(5052):1707–1710CrossRefPubMedGoogle Scholar
  5. 5.
    Zhang SC, Wernig M, Duncan ID et al (2001) In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat Biotechnol 19(12):1129–1133. doi: 10.1038/nbt1201-1129 CrossRefPubMedGoogle Scholar
  6. 6.
    Barker RA, de Beaufort I (2013) Scientific and ethical issues related to stem cell research and interventions in neurodegenerative disorders of the brain. Prog Neurobiol 110:63–73. doi: 10.1016/j.pneurobio.2013.04.003 CrossRefPubMedGoogle Scholar
  7. 7.
    Prasad A, Manivannan J, Loong DT et al (2016) A review of induced pluripotent stem cell, direct conversion by trans-differentiation, direct reprogramming and oligodendrocyte differentiation. Regen Med 11(2):181–191. doi: 10.2217/rme.16.5 CrossRefPubMedGoogle Scholar
  8. 8.
    Takahashi K, Tanabe K, Ohnuki M et al (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131(5):861–872. doi: 10.1016/j.cell.2007.11.019 CrossRefPubMedGoogle Scholar
  9. 9.
    Xu J, Du Y, Deng H (2015) Direct lineage reprogramming: strategies, mechanisms, and applications. Cell stem cell 16(2):119–134. doi: 10.1016/j.stem.2015.01.013 CrossRefPubMedGoogle Scholar
  10. 10.
    Takahashi K, Yamanaka S (2016) A decade of transcription factor-mediated reprogramming to pluripotency. Nat Rev Mol Cell Biol 17(3):183–193. doi: 10.1038/nrm.2016.8 CrossRefPubMedGoogle Scholar
  11. 11.
    Li W, Li K, Wei W et al (2013) Chemical approaches to stem cell biology and therapeutics. Cell Stem Cell 13(3):270–283. doi: 10.1016/j.stem.2013.08.002.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Hou P, Li Y, Zhang X et al (2013) Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 341(6146):651–654. doi: 10.1126/science.1239278 CrossRefPubMedGoogle Scholar
  13. 13.
    Hu W, Qiu B, Guan W et al (2015) Direct conversion of normal and Alzheimer’s disease human fibroblasts into neuronal cells by small molecules. Cell Stem Cell 17(2):204–212. doi: 10.1016/j.stem.2015.07.006 CrossRefPubMedGoogle Scholar
  14. 14.
    Zhang L, Yin JC, Yeh H et al (2015) Small molecules efficiently reprogram human astroglial cells into functional neurons. Cell Stem Cell 17(6):735–747. doi: 10.1016/j.stem.2015.09.012 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Hermann A, Gastl R, Liebau S et al (2004) Efficient generation of neural stem cell-like cells from adult human bone marrow stromal cells. J Cell Sci 117(Pt 19):4411–4422. doi: 10.1242/jcs.01307 CrossRefPubMedGoogle Scholar
  16. 16.
    Fu L, Zhu L, Huang Y et al (2008) Derivation of neural stem cells from mesenchymal stemcells: evidence for a bipotential stem cell population. Stem Cells Dev 17(6):1109–1121. doi: 10.1089/scd.2008.0068 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Harris VK, Faroqui R, Vyshkina T et al (2012) Characterization of autologous mesenchymal stem cell-derived neural progenitors as a feasible source of stem cells for central nervous system applications in multiple sclerosis. Stem Cells Transl Med 1(7):536–547. doi: 10.5966/sctm.2012-0015 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Heo JS, Choi SM, Kim HO et al (2013) Neural transdifferentiation of human bone marrow mesenchymal stem cells on hydrophobic polymer-modified surface and therapeutic effects in an animal model of ischemic stroke. Neuroscience 238:305–318. doi: 10.1016/j.neuroscience.2013.02.011 CrossRefPubMedGoogle Scholar
  19. 19.
    Ma K, Fox L, Shi G et al (2011) Generation of neural stem cell-like cells from bone marrow-derived human mesenchymal stem cells. Neurol Res 33(10):1083–1093. doi: 10.1179/1743132811Y.0000000053 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Balasubramanian S, Thej C, Venugopal P et al (2013) Higher propensity of Wharton’s jelly derived mesenchymal stromal cells towards neuronal lineage in comparison to those derived from adipose and bone marrow. Cell Biol Int 37(5):507–515. doi: 10.1002/cbin.10056 CrossRefPubMedGoogle Scholar
  21. 21.
    Chung CS, Fujita N, Kawahara N et al (2013) A comparison of neurosphere differentiation potential of canine bone marrow-derived mesenchymal stem cells and adipose-derived mesenchymal stem cells. J Vet Med Sci 75(7):879–886CrossRefPubMedGoogle Scholar
  22. 22.
    Huat TJ, Khan AA, Pati S et al (2014) IGF-1 enhances cell proliferation and survival during early differentiation of mesenchymal stem cells to neural progenitor-like cells. BMC Neurosci 15:91. doi: 10.1186/1471-2202-15-91 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Yang E, Liu N, Tang Y et al (2015) Generation of neurospheres from human adipose-derived stem cells. Biomed Res Int 2015:743714. doi: 10.1155/2015/743714 PubMedPubMedCentralGoogle Scholar
  24. 24.
    Neuhuber B, Gallo G, Howard L et al (2004) Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype. J Neurosci Res 77(2):192–204. doi: 10.1002/jnr.20147 CrossRefPubMedGoogle Scholar
  25. 25.
    Hermann A, Liebau S, Gastl R et al (2006) Comparative analysis of neuroectodermal differentiation capacity of human bone marrow stromal cells using various conversion protocols. J Neurosci Res 83(8):1502–1514. doi: 10.1002/jnr.20840 CrossRefPubMedGoogle Scholar
  26. 26.
    Chen G, Wang Y, Xu Z et al (2013) Neural stem cell-like cells derived from autologous bone mesenchymal stem cells for the treatment of patients with cerebral palsy. J Transl Med 11:21. doi: 10.1186/1479-5876-11-21 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Montesinos JJ, Flores-Figueroa E, Castillo-Medina S et al (2009) Human mesenchymal stromal cells from adult and neonatal sources: comparative analysis of their morphology, immunophenotype, differentiation patterns and neural protein expression. Cytotherapy 11(2):163–176. doi: 10.1080/14653240802582075 CrossRefPubMedGoogle Scholar
  28. 28.
    Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Pankov R, Yamada KM (2002) Fibronectin at a glance. J Cell Sci 115(Pt 20):3861–3863CrossRefPubMedGoogle Scholar
  30. 30.
    Sottile J, Hocking DC, Swiatek PJ (1998) Fibronectin matrix assembly enhances adhesion-dependent cell growth. J Cell Sci 111(Pt 19):2933–2943PubMedGoogle Scholar
  31. 31.
    Li X, Zuo X, Jing J et al (2015) Small-molecule-driven direct reprogramming of mouse fibroblasts into functional neurons. Cell Stem Cell 17(2):195–203. doi: 10.1016/j.stem.2015.06.003 CrossRefPubMedGoogle Scholar
  32. 32.
    Vierbuchen T, Ostermeier A, Pang ZP et al (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463(7284):1035–1041. doi: 10.1038/nature08797 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Li W, Sun W, Zhang Y et al (2011) Rapid induction and long-term self-renewal of primitive neural precursors from human embryonic stem cells by small molecule inhibitors. Proc Natl Acad Sci USA 108(20):8299–8304. doi: 10.1073/pnas.1014041108 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kim H, Wu J, Ye S et al (2013) Modulation of beta-catenin function maintains mouse epiblast stem cell and human embryonic stem cell self-renewal. Nature Commun 4:2403. doi: 10.1038/ncomms3403 Google Scholar
  35. 35.
    Lamas NJ, Johnson-Kerner B, Roybon L et al (2014) Neurotrophic requirements of human motor neurons defined using amplified and purified stem cell-derived cultures. PloS One 9(10):e110324. doi: 10.1371/journal.pone.0110324 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Xi G, Hu P, Qu C et al (2013) Induced neural stem cells generated from rat fibroblasts. Genomics Proteomics Bioinformatics 11(5):312–319. doi: 10.1016/j.gpb.2013.09.003 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Alejandro Aguilera-Castrejon
    • 1
  • Herminia Pasantes-Morales
    • 1
  • Juan José Montesinos
    • 2
  • Lorena V. Cortés-Medina
    • 1
  • Marta E. Castro-Manrreza
    • 2
    • 4
  • Héctor Mayani
    • 3
  • Gerardo Ramos-Mandujano
    • 1
    Email author
  1. 1.División de Neurociencias, Instituto de Fisiología CelularUniversidad Nacional Autónoma de MéxicoMexico CityMexico
  2. 2.Mesenchymal Stem Cells Laboratory, Oncology Research Unit, Oncology Hospital, National Medical CenterIMSSMexico CityMexico
  3. 3.Hematopoietic Stem Cells Laboratory, Oncology Research Unit, Oncology Hospital, National Medical CenterIMSSMexico CityMexico
  4. 4.CONACYT-Children Hospital of Mexico Federico GómezMexico CityMexico

Personalised recommendations