Neurochemical Research

, Volume 42, Issue 2, pp 360–374 | Cite as

Gastrodin Reduces the Severity of Status Epilepticus in the Rat Pilocarpine Model of Temporal Lobe Epilepsy by Inhibiting Nav1.6 Sodium Currents

  • Hui Shao
  • Yang Yang
  • Ai-ping Qi
  • Pian Hong
  • Guang-xi Zhu
  • Xin-yu Cao
  • Wei-gang Ji
  • Zhi-ru ZhuEmail author
Original Paper


Temporal lobe epilepsy (TLE) is one of the most refractory types of adult epilepsy, and treatment options remain unsatisfactory. Gastrodin (GAS), a phenolic glucoside used in Chinese herbal medicine and derived from Gastrodia elata Blume, has been shown to have remarkable anticonvulsant effects on various models of epilepsy in vivo. However, the mechanisms of GAS as an anticonvulsant drug remain to be established. By utilizing a combination of behavioral surveys, immunofluorescence and electrophysiological recordings, the present study characterized the anticonvulsant effect of GAS in a pilocarpine-induced status epilepticus (SE) rat model of TLE and explored the underlying cellular mechanisms. We found that GAS pretreatment effectively reduced the severity of SE in the acute phase of TLE. Moreover, GAS protected medial entorhinal cortex (mEC) layer III neurons from neuronal death and terminated the SE-induced bursting discharge of mEC layer II neurons from SE-experienced rats. Furthermore, the current study revealed that GAS prevented the pilocarpine-induced enhancement of Nav1.6 currents (persistent (INaP) and resurgent (INaR) currents), which were reported to play a critical role in the generation of bursting spikes. Consistent with this result, GAS treatment reversed the expression of Nav1.6 protein in SE-experienced EC neurons. These results suggest that the inhibition of Nav1.6 sodium currents may be the underlying mechanism of GAS’s anticonvulsant properties.


Gastrodin Entorhinal cortex Temporal lobe epilepsy Nav1.6 currents 



This work was supported by grants from the National Natural Foundation of China (31671106), the Scientific Foundation of Chongqing (CSTC2015JCYJA10108).


  1. 1.
    Ali I, O’Brien P, Kumar G, Zheng T, Jones NC, Pinault D, French C, Morris MJ, Salzberg MR, O’Brien TJ (2013) Enduring effects of early life stress on firing patterns of hippocampal and thalamocortical neurons in rats: implications for limbic epilepsy. PloS One 8:e66962CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Althaus A, Sagher O, Parent JM, Murphy GG (2015) Intrinsic neurophysiological properties of hilar ectopic and normotopic dentate granule cells in human temporal lobe epilepsy and a rat model. J Neurophysiol 113:1184–1194CrossRefPubMedGoogle Scholar
  3. 3.
    An SJ, Park SK, Hwang IK, Choi SY, Kim SK, Kwon OS, Jung SJ, Baek NI, Lee HY, Won MH (2003) Gastrodin decreases immunoreactivities of γ-aminobutyric acid shunt enzymes in the hippocampus of seizure-sensitive gerbils. J Neurosci Res 71:534–543CrossRefPubMedGoogle Scholar
  4. 4.
    Bartolomei F, Khalil M, Wendling F, Sontheimer A, Regis J, Ranjeva JP, Guye M, Chauvel P (2005) Entorhinal cortex involvement in human mesial temporal lobe epilepsy: an electrophysiologic and volumetric study. Epilepsia 46:677–687CrossRefPubMedGoogle Scholar
  5. 5.
    Becker AJ, Pitsch J, Sochivko D, Opitz T, Staniek M, Chen CC, Campbell KP, Schoch S, Yaari Y, Beck H (2008) Transcriptional upregulation of Cav3.2 mediates epileptogenesis in the pilocarpine model of epilepsy. J Neurosci 28:13341–13353CrossRefPubMedGoogle Scholar
  6. 6.
    Bernard C (2010) Alterations in synaptic function in epilepsy. Epilepsia 51:42–42CrossRefGoogle Scholar
  7. 7.
    Bernasconi N, Andermann F, Arnold DL, Bernasconi A (2003) Entorhinal cortex MRI assessment in temporal, extratemporal, and idiopathic generalized epilepsy. Epilepsia 44:1070–1074CrossRefPubMedGoogle Scholar
  8. 8.
    Bertram EH (1997) Functional anatomy of spontaneous seizures in a rat model of limbic epilepsy. Epilepsia 38:95–105CrossRefPubMedGoogle Scholar
  9. 9.
    Blumenfeld H, Lampert A, Klein JP, Mission J, Chen MC, Rivera M, Dib-Hajj S, Brennan AR, Hains BC, Waxman SG (2009) Role of hippocampal sodium channel Nav1.6 in kindling epileptogenesis. Epilepsia 50:44–55CrossRefPubMedGoogle Scholar
  10. 10.
    Canto CB, Wouterlood FG, Witter MP (2008) What does the anatomical organization of the entorhinal cortex tell us?. Neural Plast 2008:381243PubMedPubMedCentralGoogle Scholar
  11. 11.
    Cao L, Xu J, Lin Y, Zhao X, Liu X, Chi Z (2009) Autophagy is upregulated in rats with status epilepticus and partly inhibited by vitamin E. Biochem Biophys Res Commun 379:949–953CrossRefPubMedGoogle Scholar
  12. 12.
    Chen S, Su H, Yue C, Remy S, Royeck M, Sochivko D, Opitz T, Beck H, Yaari Y (2011) An increase in persistent sodium current contributes to intrinsic neuronal bursting after status epilepticus. J Neurophysiol 105:117–129CrossRefPubMedGoogle Scholar
  13. 13.
    Cooper DC, Chung S, Spruston N (2005) Output-mode transitions are controlled by prolonged inactivation of sodium channels in pyramidal neurons of subiculum. PLoS Biol 3:e175CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Davidson S, Copits BA, Zhang J, Page G, Ghetti A, Gereau RWt (2014) Human sensory neurons: membrane properties and sensitization by inflammatory mediators. Pain 155:1861–1870CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Du F, Eid T, Lothman EW, Kohler C, Schwarcz R (1995) Preferential neuronal loss in layer III of the medial entorhinal cortex in rat models of temporal lobe epilepsy. J Neurosci 15:6301–6313PubMedGoogle Scholar
  16. 16.
    Du F, Whetsell WO Jr, Abou-Khalil B, Blumenkopf B, Lothman EW, Schwarcz R (1993) Preferential neuronal loss in layer III of the entorhinal cortex in patients with temporal lobe epilepsy. Epilepsy Res 16:223–233CrossRefPubMedGoogle Scholar
  17. 17.
    Eftekhari S, Mehrabi S, Karimzadeh F, Joghataei MT, Khaksarian M, Hadjighassem MR, Katebi M, Soleimani M (2016) Brain derived neurotrophic factor modification of epileptiform burst discharges in a temporal lobe epilepsy model. Basic Clin Neurosci 7:115–120PubMedPubMedCentralGoogle Scholar
  18. 18.
    Glien M, Brandt C, Potschka H, Voigt H, Ebert U, Loscher W (2001) Repeated low-dose treatment of rats with pilocarpine: low mortality but high proportion of rats developing epilepsy. Epilepsy Res 46:111–119CrossRefPubMedGoogle Scholar
  19. 19.
    Goldin AL (2001) Resurgence of sodium channel research. Annu Rev Physiol 63:871–894CrossRefPubMedGoogle Scholar
  20. 20.
    Gonzalez-Reyes S, Santillan-Cigales JJ, Jimenez-Osorio AS, Pedraza-Chaverri J, Guevara-Guzman R (2016) Glycyrrhizin ameliorates oxidative stress and inflammation in hippocampus and olfactory bulb in lithium/pilocarpine-induced status epilepticus in rats. Epilepsy Res 126:126–133CrossRefPubMedGoogle Scholar
  21. 21.
    Graef JD, Nordskog BK, Wiggins WF, Godwin DW (2009) An acquired channelopathy involving thalamic T-type Ca2+ channels after status epilepticus. J Neurosci 29:4430–4441CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Hargus NJ, Merrick EC, Nigam A, Kalmar CL, Baheti AR, Bertram EH, Patel MK (2011) Temporal lobe epilepsy induces intrinsic alterations in Na channel gating in layer II medial entorhinal cortex neurons. Neurobiol Dis 41:361–376CrossRefPubMedGoogle Scholar
  23. 23.
    Hargus NJ, Nigam A, Bertram EH 3rd, Patel MK (2013) Evidence for a role of Nav1.6 in facilitating increases in neuronal hyperexcitability during epileptogenesis. J Neurophysiol 110:1144–1157CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Herrik KF, Christophersen P, Shepard PD (2010) Pharmacological modulation of the gating properties of small conductance Ca2+ -activated K+ channels alters the firing pattern of dopamine neurons in vivo. J Neurophysiol 104:1726–1735CrossRefPubMedGoogle Scholar
  25. 25.
    Holtkamp M, Buchheim K, Elsner M, Matzen J, Weissinger F, Meierkord H (2011) Status epilepticus induces increasing neuronal excitability and hypersynchrony as revealed by optical imaging. Neurobiol Dis 43:220–227CrossRefPubMedGoogle Scholar
  26. 26.
    Hsieh CL, Chiang SY, Cheng KS, Lin YH, Tang NY, Lee CJ, Pon CZ, Hsieh CT (2001) Anticonvulsive and free radical scavenging activities of Gastrodia elata Bl. in kainic acid-treated rats. Am J Chin Med 29:331–341CrossRefPubMedGoogle Scholar
  27. 27.
    Hu W, Tian C, Li T, Yang M, Hou H, Shu Y (2009) Distinct contributions of Na(v)1.6 and Na(v)1.2 in action potential initiation and backpropagation. Nat Neurosci 12:996–1002CrossRefPubMedGoogle Scholar
  28. 28.
    Isokawa-Akesson M, Wilson CL, Babb TL (1987) Structurally stable burst and synchronized firing in human amygdala neurons: auto-and cross-correlation analyses in temporal lobe epilepsy. Epilepsy Res 1:17–34CrossRefPubMedGoogle Scholar
  29. 29.
    Jutila L, Ylinen A, Partanen K, Alafuzoff I, Mervaala E, Partanen J, Vapalahti M, Vainio P, Pitkanen A (2001) MR volumetry of the entorhinal, perirhinal, and temporopolar cortices in drug-refractory temporal lobe epilepsy. Am J Neuroradiol 22:1490–1501PubMedGoogle Scholar
  30. 30.
    Karus C, Mondragao MA, Ziemens D, Rose CR (2015) Astrocytes restrict discharge duration and neuronal sodium loads during recurrent network activity. Glia 63:936–957CrossRefPubMedGoogle Scholar
  31. 31.
    Knaus HG, Schwarzer C, Koch RO, Eberhart A, Kaczorowski GJ, Glossmann H, Wunder F, Pongs O, Garcia ML, Sperk G (1996) Distribution of high-conductance Ca(2+) -activated K+ channels in rat brain: targeting to axons and nerve terminals. J Neurosci 16:955–963PubMedGoogle Scholar
  32. 32.
    Kumbhare D, Chaniary KD, Baron MS (2015) Preserved dichotomy but highly irregular and burst discharge in the basal ganglia in alert dystonic rats at rest. Brain Res 1624:297–313CrossRefPubMedGoogle Scholar
  33. 33.
    Li Y, Zhang Z (2015) Gastrodin improves cognitive dysfunction and decreases oxidative stress in vascular dementia rats induced by chronic ischemia. Int J Clin Exp Pathol 8:14099–14109PubMedPubMedCentralGoogle Scholar
  34. 34.
    Meisler MH, Kearney JA (2005) Sodium channel mutations in epilepsy and other neurological disorders. J Clin Invest 115:2010–2017CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Nahm FK, Dale AM, Albright TD, Amaral DG (1994) In vivo microelectrode localization in the brain of the alert monkey: a combined radiographic and magnetic resonance imaging approach. Exp Brain Res 98:401–411CrossRefPubMedGoogle Scholar
  36. 36.
    Ni Z-G, Bouali-Benazzouz R, Gao D-M, Benabid A-L, Benazzouz A (2001) Time-course of changes in firing rates and firing patterns of subthalamic nucleus neuronal activity after 6-OHDA-induced dopamine depletion in rats. Brain Res 899:142–147CrossRefPubMedGoogle Scholar
  37. 37.
    Nigro MJ, Quattrocolo G, Magistretti J (2012) Distinct developmental patterns in the expression of transient, persistent, and resurgent Na+ currents in entorhinal cortex layer-II neurons. Brain Res 1463:30–41CrossRefPubMedGoogle Scholar
  38. 38.
    Nilsen KE, Kelso AR, Cock HR (2006) Antiepileptic effect of gap-junction blockers in a rat model of refractory focal cortical epilepsy. Epilepsia 47:1169–1175CrossRefPubMedGoogle Scholar
  39. 39.
    Noebels JL, Prince DA (1978) Development of focal seizures in cerebral cortex: role of axon terminal bursting. J Neurophysiol 41:1267–1281PubMedGoogle Scholar
  40. 40.
    O’Brien JE, Meisler MH (2013) Sodium channel SCN8A (Nav1.6): properties and de novo mutations in epileptic encephalopathy and intellectual disability. Front Genet 4:213PubMedPubMedCentralGoogle Scholar
  41. 41.
    Ojemann LM, Nelson WL, Shin DS, Rowe AO, Buchanan RA (2006) Tian ma, an ancient Chinese herb, offers new options for the treatment of epilepsy and other conditions. Epilepsy Behav 8:376–383CrossRefPubMedGoogle Scholar
  42. 42.
    Otalora LFP, Hernandez EF, Arshadmansab MF, Francisco S, Willis M, Ermolinsky B, Zarei M, Knaus H-G, Garrido-Sanabria ER (2008) Down-regulation of BK channel expression in the pilocarpine model of temporal lobe epilepsy. Brain Res 1200:116–131CrossRefGoogle Scholar
  43. 43.
    Pardillo-Diaz R, Carrascal L, Munoz MF, Ayala A, Nunez-Abades P (2016) Time and dose dependent effects of oxidative stress induced by cumene hydroperoxide in neuronal excitability of rat motor cortex neurons. Neurotoxicology 53:201–214CrossRefPubMedGoogle Scholar
  44. 44.
    Paz JT, Deniau JM, Charpier S (2005) Rhythmic bursting in the cortico-subthalamo-pallidal network during spontaneous genetically determined spike and wave discharges. J Neurosci 25:2092–2101CrossRefPubMedGoogle Scholar
  45. 45.
    Pike FG, Meredith RM, Olding AW, Paulsen O (1999) Postsynaptic bursting is essential for ‘Hebbian’induction of associative long-term potentiation at excitatory synapses in rat hippocampus. J Physiol 518:571–576CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Qiao X, Werkman TR, Gorter JA, Wadman WJ, van Vliet EA (2013) Expression of sodium channel alpha subunits 1. 1, 1.2 and 1.6 in rat hippocampus after kainic acid-induced epilepsy. Epilepsy Res 106:17–28CrossRefPubMedGoogle Scholar
  47. 47.
    Qu LL, Yu B, Li Z, Jiang WX, Jiang JD, Kong WJ (2016) Gastrodin ameliorates oxidative stress and proinflammatory Response in nonalcoholic fatty liver disease through the AMPK/Nrf2 pathway. Phytother Res 30:402–411CrossRefPubMedGoogle Scholar
  48. 48.
    Racine RJ (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 32:281–294CrossRefPubMedGoogle Scholar
  49. 49.
    Raman IM, Bean BP (1997) Resurgent sodium current and action potential formation in dissociated cerebellar Purkinje neurons. J Neurosci 17:4517–4526PubMedGoogle Scholar
  50. 50.
    Ren SC, Chen PZ, Jiang HH, Mi Z, Xu F, Hu B, Zhang J, Zhu ZR (2014) Persistent sodium currents contribute to Abeta1-42-induced hyperexcitation of hippocampal CA1 pyramidal neurons. Neurosci Lett 580:62–67CrossRefPubMedGoogle Scholar
  51. 51.
    Rossi AR, Angelo MF, Villarreal A, Lukin J, Ramos AJ (2013) Gabapentin administration reduces reactive gliosis and neurodegeneration after pilocarpine-induced status epilepticus. PloS One 8:e78516CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Sah N, Sikdar SK (2013) Transition in subicular burst firing neurons from epileptiform activity to suppressed state by feedforward inhibition. Eur J Neurosci 38:2542–2556CrossRefPubMedGoogle Scholar
  53. 53.
    Sanabria ER, Su H, Yaari Y (2001) Initiation of network bursts by Ca2+ -dependent intrinsic bursting in the rat pilocarpine model of temporal lobe epilepsy. J Physiol 532:205–216CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Scharfman HE, Chao MV (2013) The entorhinal cortex and neurotrophin signaling in Alzheimer’s disease and other disorders. Cognitive Neurosci 4:123–135CrossRefGoogle Scholar
  55. 55.
    Sekiguchi K, Takehana S, Shibuya E, Matsuzawa N, Hidaka S, Kanai Y, Inoue M, Kubota Y, Shimazu Y, Takeda M (2016) Resveratrol attenuates inflammation-induced hyperexcitability of trigeminal spinal nucleus caudalis neurons associated with hyperalgesia in rats. Mol Pain. doi: 10.1177/1744806916643082 Google Scholar
  56. 56.
    Shao H, Mi Z, Ji WG, Zhang CH, Zhang T, Ren SC, Zhu ZR (2015) Rhynchophylline protects against the amyloid beta-induced increase of spontaneous discharges in the hippocampal CA1 region of rats. Neurochem Res 40:2365–2373CrossRefPubMedGoogle Scholar
  57. 57.
    Spencer SS, Spencer DD (1994) Entorhinal-hippocampal interactions in medial temporal lobe epilepsy. Epilepsia 35:721–727CrossRefPubMedGoogle Scholar
  58. 58.
    Sperk G, Furtinger S, Schwarzer C, Pirker S (2004) GABA and its receptors in epilepsy. Adv Exp Med Biol 548:92–103CrossRefPubMedGoogle Scholar
  59. 59.
    Sun W, Miao B, Wang X-C, Duan J-H, Ye X, Han W-J, Wang W-T, Luo C, Hu S-J (2012) Gastrodin inhibits allodynia and hyperalgesia in painful diabetic neuropathy rats by decreasing excitability of nociceptive primary sensory neurons. PloS One 7:e39647CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Thomas MJ, Watabe AM, Moody TD, Makhinson M, O’Dell TJ (1998) Postsynaptic complex spike bursting enables the induction of LTP by theta frequency synaptic stimulation. J Neurosci 18:7118–7126PubMedGoogle Scholar
  61. 61.
    Tryba AK, Kaczorowski CC, Ben-Mabrouk F, Elsen FP, Lew SM, Marcuccilli CJ (2011) Rhythmic intrinsic bursting neurons in human neocortex obtained from pediatric patients with epilepsy. Eur J Neurosci 34:31–44CrossRefPubMedGoogle Scholar
  62. 62.
    Wang XS, Tian Z, Zhang N, Han J, Guo HL, Zhao MG, Liu SB (2016) Protective effects of gastrodin against autophagy-mediated astrocyte death. Phytother Res 30:386–396CrossRefPubMedGoogle Scholar
  63. 63.
    Wyler AR, Fetz EE, Ward AA Jr (1975) Firing patterns of epileptic and normal neurons in the chronic alumina focus in undrugged monkeys during different behavioral states. Brain Res 98:1–20CrossRefPubMedGoogle Scholar
  64. 64.
    Xie W, Strong JA, Kim D, Shahrestani S, Zhang J-M (2012) Bursting activity in myelinated sensory neurons plays a key role in pain behavior induced by localized inflammation of the rat sensory ganglion. Neuroscience 206:212–223CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Yu YH, Xie W, Bao Y, Li HM, Hu SJ, Xing JL (2012) Saikosaponin a mediates the anticonvulsant properties in the HNC models of AE and SE by inhibiting NMDA receptor current and persistent sodium current. PloS One 7:e50694CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Yue C, Remy S, Su H, Beck H, Yaari Y (2005) Proximal persistent Na+ channels drive spike afterdepolarizations and associated bursting in adult CA1 pyramidal cells. J Neurosci 25:9704–9720CrossRefPubMedGoogle Scholar
  67. 67.
    Zhang R, Peng Z, Wang H, Xue F, Chen Y, Wang Y, Wang H, Tan Q (2014) Gastrodin ameliorates depressive-like behaviors and up-regulates the expression of BDNF in the hippocampus and hippocampal-derived astrocyte of rats. Neurochem Res 39:172–179CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Hui Shao
    • 1
    • 2
    • 3
  • Yang Yang
    • 1
  • Ai-ping Qi
    • 1
  • Pian Hong
    • 1
  • Guang-xi Zhu
    • 1
  • Xin-yu Cao
    • 3
  • Wei-gang Ji
    • 4
  • Zhi-ru Zhu
    • 1
    • 2
    Email author
  1. 1.Department of Developmental Neuropsychology, School of PsychologyThird Military Medical UniversityChongqingChina
  2. 2.Department of PhysiologyThird Military Medical UniversityChongqingChina
  3. 3.The Fifth Camp of Cadet BrigadeThird Military Medical UniversityChongqingChina
  4. 4.Department of Chemistry, Faculty of PharmacyThird Military Medical UniversityChongqingChina

Personalised recommendations