Advertisement

Neurochemical Research

, Volume 41, Issue 12, pp 3407–3416 | Cite as

Increased Expression of Caspase-12 After Experimental Subarachnoid Hemorrhage

  • Hua Li
  • Jia-Sheng Yu
  • Hua-Sheng Zhang
  • Yi-Qing Yang
  • Li-Tian Huang
  • Ding-Ding Zhang
  • Chun-Hua HangEmail author
Original Paper

Abstract

Convincing evidences have proved that apoptosis plays a vital role in the pathogenesis of early and delayed brain injury following subarachnoid hemorrhage (SAH). Recently, a novel caspase-12-mediated apoptotic pathway has been reported to be induced by excess endoplasmic reticulum (ER) stress. Extensive protein damage occurs after SAH, which may trigger ER stress-associated apoptotic pathway. Thus, we hypothesized that caspase-12, as the major molecular marker of this novel apoptotic pathway, may be activated and involved in the pathogenesis of apoptotic injury after SAH. This study sought to investigate the changes of caspase-12 expressions in both in vitro and in vivo SAH models. Western blot analysis found significantly increased protein expressions of both pro- and active forms of caspase-12 after SAH. Quantitative real-time PCR and immunohistochemistry assays confirmed elevated caspase-12 level after SAH in vivo. Further, double immunofluorescence staining revealed obvious caspase-12 over-expression in both cortical neurons and astrocytes. Moreover, immunofluorescent co-staining in vivo demonstrated that neural cells with high immunoreactivity of caspase-12 also expressed caspase-3, and dual-immunofluorescent staining for caspase-12 and TUNEL in vitro showed that TUNEL-positive cells were more likely to exhibit higher caspase-12 immunoreactivity, indicating a potential contribution of caspase-12 activation to apoptosis in SAH. Collectively, our results showed significant upregulation of caspase-12 expression after experimental SAH. These findings also offer important implications for further investigations of the therapeutic potential of caspase-12 associated apoptosis in SAH.

Keywords

Apoptosis Caspase-12 Caspase-3 Endoplasmic reticulum stress Subarachnoid hemorrhage 

Abbreviations

DAPI

4′,6-diamidino-2-phenylindole

CASP3

Caspase-3

CASP12

Caspase-12

ER

Endoplasmic reticulum

HB

Hemoglobin

GFAP

Glialfibrillary acidic protein

NeuN

Neuron specific nuclear protein

PBS

Phosphate-buffered saline

PCR

Polymerase chain reaction

SAH

Subarachnoid hemorrhage

TUNNEL

Terminal deoxynucleotidyl transferase dUTP nick-end labeling

Notes

Acknowledgments

This study was supported by grants from the National Natural Science Foundation of China (No. 81371294 and No. 81601008) and the Natural Science Foundation of Jiangsu Province (No. BK20141375).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that there is no conflict of interest.

References

  1. 1.
    Rinkel GJ, Algra A (2011) Long-term outcomes of patients with aneurysmal subarachnoid haemorrhage. Lancet Neurol 10(4):349–356. doi: 10.1016/S1474-4422(11)70017-5 CrossRefPubMedGoogle Scholar
  2. 2.
    Hasegawa Y, Suzuki H, Sozen T, Altay O, Zhang JH (2011) Apoptotic mechanisms for neuronal cells in early brain injury after subarachnoid hemorrhage. Acta Neurochir Suppl 110(Pt 1):43–48. doi: 10.1007/978-3-7091-0353-1_8 PubMedGoogle Scholar
  3. 3.
    Zhou C, Yamaguchi M, Colohan AR, Zhang JH (2005) Role of p53 and apoptosis in cerebral vasospasm after experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab 25(5):572–582. doi: 10.1038/sj.jcbfm.9600069 CrossRefPubMedGoogle Scholar
  4. 4.
    Nau R, Haase S, Bunkowski S, Bruck W (2002) Neuronal apoptosis in the dentate gyrus in humans with subarachnoid hemorrhage and cerebral hypoxia. Brain Pathol 12(3):329–336PubMedGoogle Scholar
  5. 5.
    Yuksel S, Tosun YB, Cahill J, Solaroglu I (2012) Early brain injury following aneurysmal subarachnoid hemorrhage: emphasis on cellular apoptosis. Turk Neurosurg 22(5):529–533. doi: 10.5137/1019-5149.JTN.5731-12.1 PubMedGoogle Scholar
  6. 6.
    Friedrich V, Flores R, Sehba FA (2012) Cell death starts early after subarachnoid hemorrhage. Neurosci Lett 512(1):6–11. doi: 10.1016/j.neulet.2012.01.036 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Sabri M, Kawashima A, Ai J, Macdonald RL (2008) Neuronal and astrocytic apoptosis after subarachnoid hemorrhage: a possible cause for poor prognosis. Brain Res 1238:163–171. doi: 10.1016/j.brainres.2008.08.031 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Zhou C, Yamaguchi M, Kusaka G, Schonholz C, Nanda A, Zhang JH (2004) Caspase inhibitors prevent endothelial apoptosis and cerebral vasospasm in dog model of experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab 24(4):419–431. doi: 10.1097/00004647-200404000-00007 CrossRefPubMedGoogle Scholar
  9. 9.
    Iseda K, Ono S, Onoda K, Satoh M, Manabe H, Nishiguchi M, Takahashi K, Tokunaga K, Sugiu K, Date I (2007) Antivasospastic and antiinflammatory effects of caspase inhibitor in experimental subarachnoid hemorrhage. J Neurosurg 107(1):128–135. doi: 10.3171/JNS-07/07/0128 CrossRefPubMedGoogle Scholar
  10. 10.
    Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403(6765):98–103. doi: 10.1038/47513 CrossRefPubMedGoogle Scholar
  11. 11.
    Groenendyk J, Agellon LB, Michalak M (2013) Coping with endoplasmic reticulum stress in the cardiovascular system. Annu Rev Physiol 75:49–67. doi: 10.1146/annurev-physiol-030212-183707 CrossRefPubMedGoogle Scholar
  12. 12.
    Roussel BD, Kruppa AJ, Miranda E, Crowther DC, Lomas DA, Marciniak SJ (2013) Endoplasmic reticulum dysfunction in neurological disease. Lancet Neurol 12(1):105–118. doi: 10.1016/S1474-4422(12)70238-7 CrossRefPubMedGoogle Scholar
  13. 13.
    Ozcan L, Tabas I (2012) Role of endoplasmic reticulum stress in metabolic disease and other disorders. Annu Rev Med 63:317–328. doi: 10.1146/annurev-med-043010-144749 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Rao RV, Hermel E, Castro-Obregon S, del Rio G, Ellerby LM, Ellerby HM, Bredesen DE (2001) Coupling endoplasmic reticulum stress to the cell death program. Mechanism of caspase activation. J Biol Chem 276(36):33869–33874. doi: 10.1074/jbc.M102225200 CrossRefPubMedGoogle Scholar
  15. 15.
    Yan F, Li J, Chen J, Hu Q, Gu C, Lin W, Chen G (2014) Endoplasmic reticulum stress is associated with neuroprotection against apoptosis via autophagy activation in a rat model of subarachnoid hemorrhage. Neurosci Lett 563:160–165. doi: 10.1016/j.neulet.2014.01.058 CrossRefPubMedGoogle Scholar
  16. 16.
    Zhao D, Liu Q, Ji Y, Wang G, He X, Tian W, Xu H, Lei T, Wang Y (2015) Correlation between nitric oxide and early brain injury after subarachnoid hemorrhage. Int J Neurosci 125(7):531–539. doi: 10.3109/00207454.2014.951442 CrossRefPubMedGoogle Scholar
  17. 17.
    Li H, Wu W, Sun Q, Liu M, Li W, Zhang XS, Zhou ML, Hang CH (2014) Expression and cell distribution of receptor for advanced glycation end-products in the rat cortex following experimental subarachnoid hemorrhage. Brain Res 1543:315–323. doi: 10.1016/j.brainres.2013.11.023 CrossRefPubMedGoogle Scholar
  18. 18.
    Regan RF, Panter SS (1993) Neurotoxicity of hemoglobin in cortical cell culture. Neurosci Lett 153(2):219–222CrossRefPubMedGoogle Scholar
  19. 19.
    You WC, Li W, Zhuang Z, Tang Y, Lu HC, Ji XJ, Shen W, Shi JX, Zhou ML (2012) Biphasic activation of nuclear factor-kappa B in experimental models of subarachnoid hemorrhage in vivo and in vitro. Mediators Inflamm 2012:786242. doi: 10.1155/2012/786242 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Sun Q, Dai Y, Zhang X, Hu YC, Zhang D, Li W, Zhang XS, Zhu JH, Zhou ML, Hang CH (2013) Expression and cell distribution of myeloid differentiation primary response protein 88 in the cerebral cortex following experimental subarachnoid hemorrhage in rats: a pilot study. Brain Res 1520:134–144. doi: 10.1016/j.brainres.2013.05.010 CrossRefPubMedGoogle Scholar
  21. 21.
    Larner SF, Hayes RL, McKinsey DM, Pike BR, Wang KK (2004) Increased expression and processing of caspase-12 after traumatic brain injury in rats. J Neurochem 88(1):78–90CrossRefPubMedGoogle Scholar
  22. 22.
    Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3(6):1101–1108CrossRefPubMedGoogle Scholar
  23. 23.
    Li H, Yu JS, Zhang DD, Yang YQ, Huang LT, Yu Z, Chen RD, Yang HK, Hang CH (2016) Inhibition of the receptor for advanced glycation end-products (RAGE) attenuates neuroinflammation while sensitizing cortical neurons towards death in experimental subarachnoid hemorrhage. Mol Neurobiol. doi: 10.1007/s12035-016-9703-y Google Scholar
  24. 24.
    Boyce M, Yuan J (2006) Cellular response to endoplasmic reticulum stress: a matter of life or death. Cell Death Differ 13(3):363–373. doi: 10.1038/sj.cdd.4401817 CrossRefPubMedGoogle Scholar
  25. 25.
    Shore GC, Papa FR, Oakes SA (2011) Signaling cell death from the endoplasmic reticulum stress response. Curr Opin Cell Biol 23(2):143–149. doi: 10.1016/j.ceb.2010.11.003 CrossRefPubMedGoogle Scholar
  26. 26.
    He Z, Ostrowski RP, Sun X, Ma Q, Huang B, Zhan Y, Zhang JH (2012) CHOP silencing reduces acute brain injury in the rat model of subarachnoid hemorrhage. Stroke 43(2):484–490. doi: 10.1161/STROKEAHA.111.626432 CrossRefPubMedGoogle Scholar
  27. 27.
    He Z, Ostrowski RP, Sun X, Ma Q, Tang J, Zhang JH (2012) Targeting C/EBP homologous protein with siRNA attenuates cerebral vasospasm after experimental subarachnoid hemorrhage. Exp Neurol 238(2):218–224. doi: 10.1016/j.expneurol.2012.08.025 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Ostrowski RP, Colohan AR, Zhang JH (2006) Molecular mechanisms of early brain injury after subarachnoid hemorrhage. Neurol Res 28(4):399–414. doi: 10.1179/016164106X115008 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Hua Li
    • 1
  • Jia-Sheng Yu
    • 1
  • Hua-Sheng Zhang
    • 2
  • Yi-Qing Yang
    • 2
  • Li-Tian Huang
    • 3
  • Ding-Ding Zhang
    • 2
  • Chun-Hua Hang
    • 2
    Email author
  1. 1.Department of Neurosurgery, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
  2. 2.Department of Neurosurgery, Jinling Hospital, School of MedicineNanjing UniversityNanjingChina
  3. 3.Department of NeurosurgeryFourth Affiliated Hospital of Guangxi Medical UniversityLiuzhouChina

Personalised recommendations