Neurochemical Research

, Volume 41, Issue 12, pp 3333–3343 | Cite as

PRDM5 Expression and Essential Role After Acute Spinal Cord Injury in Adult Rat

  • Jie Liu
  • Weijie Wu
  • Jie Hao
  • Mingchen Yu
  • Jin Liu
  • Xinlei Chen
  • Rong Qian
  • Feng ZhangEmail author
Original Paper


PR (PRDI-BF1 and RIZ) domain proteins (PRDM) are a subfamily of the kruppel-like zinc finger gene products that modulate cellular processes such as differentiation, cell growth and apoptosis. PRDM5 is a recently identified family member that functions as a transcriptional repressor and behaves as a putative tumor suppressor in different types of cancer. However, the expression and function of PRDM5 in spinal cord injury (SCI) are still unknown. In the present study, we have performed an acute SCI model in adult rats and investigated the dynamic changes of PRDM5 expression in the spinal cord. We found that PRDM5 protein levels gradually increased, reaching a peak at day 5 and then gradually declined to a normal level at day 14 after SCI with Western blot analysis. Double immunofluorescence staining showed that PRDM5 immunoreactivity was found in neurons, astrocytes and microglia. However, the expression of PRDM5 was increased predominantly in neurons. Additionally, colocalization of PRDM5/active caspase-3 was been respectively detected in neurons. In vitro, we found that depletion of PRDM5 by short interfering RNA, obviously decreases neuronal apoptosis. In summary, this is the first description of PRDM5 expression in SCI. Our results suggested that PRDM5 might play crucial roles in CNS pathophysiology after SCI and this research will provide new drug targets for clinical treatment of SCI.


Spinal cord injury PR domain-containing protein 5 Neuron Apoptosis 



PR domain-containing protein 5


Spinal cord injury


Central nervous system


Neuronal nuclear antigen


Glial fibrillary acidic protein


Short interfering RNA



This work was supported by Nantong University Innovation Project (YKS14011).


  1. 1.
    Alkabie S, Boileau AJ (2015) The role of therapeutic hypothermia after traumatic spinal cord injury—a systematic review. World Neurosurg doi: 10.1016/j.wneu.2015.09.079 PubMedGoogle Scholar
  2. 2.
    Cheng C, Li X, Gao S, Niu S, Chen M, Qin J, Guo Z, Zhao J, Shen A (2008) Expression of CAPON after spinal cord injury in rats. J Mol Neurosci 34:109–119. doi: 10.1007/s12031-007-9019-5 CrossRefPubMedGoogle Scholar
  3. 3.
    Genovese T, Mazzon E, Mariotto S, Menegazzi M, Cardali S, Conti A, Suzuki H, Bramanti P, Cuzzocrea S (2006) Modulation of nitric oxide homeostasis in a mouse model of spinal cord injury. J Neurosurg 4:145–153. doi: 10.3171/spi.2006.4.2.145 Google Scholar
  4. 4.
    Kwon BK, Tetzlaff W, Grauer JN, Beiner J, Vaccaro AR (2004) Pathophysiology and pharmacologic treatment of acute spinal cord injury. Spine J 4:451–464. doi: 10.1016/j.spinee.2003.07.007 CrossRefPubMedGoogle Scholar
  5. 5.
    Naseem M, Parvez S (2014) Role of melatonin in traumatic brain injury and spinal cord injury. Sci World J 2014:586270. doi: 10.1155/2014/586270 CrossRefGoogle Scholar
  6. 6.
    Liu XZ, Xu XM, Hu R, Du C, Zhang SX, McDonald JW, Dong HX, Wu YJ, Fan GS, Jacquin MF, Hsu CY, Choi DW (1997) Neuronal and glial apoptosis after traumatic spinal cord injury. J Neurosci 17:5395–5406PubMedGoogle Scholar
  7. 7.
    Huan W, Wu X, Zhang S, Zhao Y, Xu H, Wang N, Li H, Chen H, Wei H, Wang Y (2012) Spatiotemporal patterns and essential role of TNF receptor-associated factor 5 expression after rat spinal cord injury. J Mol Histol 43:527–533. doi: 10.1007/s10735-012-9411-5 CrossRefPubMedGoogle Scholar
  8. 8.
    Wu G, Cao J, Peng C, Yang H, Cui Z, Zhao J, Wu Q, Han J, Li H, Gu X, Zhang F (2011) Temporal and spatial expression of cyclin H in rat spinal cord injury. Neuromol Med 13:187–196. doi: 10.1007/s12017-011-8150-1 CrossRefGoogle Scholar
  9. 9.
    Crowe MJ, Bresnahan JC, Shuman SL, Masters JN, Beattie MS (1997) Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nat Med 3:73–76CrossRefPubMedGoogle Scholar
  10. 10.
    Jana A, Hogan EL, Pahan K (2009) Ceramide and neurodegeneration: susceptibility of neurons and oligodendrocytes to cell damage and death. J Neurol Sci 278:5–15. doi: 10.1016/j.jns.2008.12.010 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Katoh K, Ikata T, Katoh S, Hamada Y, Nakauchi K, Sano T, Niwa M (1996) Induction and its spread of apoptosis in rat spinal cord after mechanical trauma. Neurosci Lett 216:9–12CrossRefPubMedGoogle Scholar
  12. 12.
    Xu D, Cui S, Sun Y, Bao G, Li W, Liu W, Zhu X, Fan J, Wang Y, Cui Z (2011) Overexpression of glucose-regulated protein 94 after spinal cord injury in rats. J Neurol Sci 309:141–147. doi: 10.1016/j.jns.2011.06.024 CrossRefPubMedGoogle Scholar
  13. 13.
    Zhang J, Li D, Shen A, Mao H, Jin H, Huang W, Xu D, Fan J, Chen J, Yang L, Cui Z (2013) Expression of RBMX after spinal cord injury in rats. J Mol Neurosci 49:417–429. doi: 10.1007/s12031-012-9914-2 CrossRefPubMedGoogle Scholar
  14. 14.
    Galli GG, Multhaupt HA, Carrara M, de Lichtenberg KH, Christensen IB, Linnemann D, Santoni-Rugiu E, Calogero RA, Lund AH (2014) Prdm5 suppresses Apc(Min)-driven intestinal adenomas and regulates monoacylglycerol lipase expression. Oncogene 33:3342–3350. doi: 10.1038/onc.2013.283 CrossRefPubMedGoogle Scholar
  15. 15.
    Ding HL, Clouthier DE, Artinger KB (2013) Redundant roles of PRDM family members in zebrafish craniofacial development. Dev Dyn 242:67–79. doi: 10.1002/dvdy.23895 CrossRefPubMedGoogle Scholar
  16. 16.
    Deng Q, Huang S (2004) PRDM5 is silenced in human cancers and has growth suppressive activities. Oncogene 23:4903–4910. doi: 10.1038/sj.onc.1207615 CrossRefPubMedGoogle Scholar
  17. 17.
    Bond CE, Bettington ML, Pearson SA, McKeone DM, Leggett BA, Whitehall VL (2015) Methylation and expression of the tumour suppressor, PRDM5, in colorectal cancer and polyp subgroups. BMC Cancer 15:20. doi: 10.1186/s12885-015-1011-9 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    He L, Yu JX, Liu L, Buyse IM, Wang MS, Yang QC, Nakagawara A, Brodeur GM, Shi YE, Huang S (1998) RIZ1, but not the alternative RIZ2 product of the same gene, is underexpressed in breast cancer, and forced RIZ1 expression causes G2-M cell cycle arrest and/or apoptosis. Cancer Res 58:4238–4244PubMedGoogle Scholar
  19. 19.
    Gruner JA (1992) A monitored contusion model of spinal cord injury in the rat. J Neurotrauma 9:123–126 (discussion 126–128) CrossRefPubMedGoogle Scholar
  20. 20.
    Shen A, Liu Y, Zhao J, Qin J, Shi S, Chen M, Gao S, Xiao F, Lu Q, Cheng C (2008) Temporal-spatial expressions of p27kip1 and its phosphorylation on Serine-10 after acute spinal cord injury in adult rat: Implications for post-traumatic glial proliferation. Neurochem Int 52:1266–1275. doi: 10.1016/j.neuint.2008.01.011 CrossRefPubMedGoogle Scholar
  21. 21.
    Zhang S, Huan W, Wei H, Shi J, Fan J, Zhao J, Shen A, Teng H (2013) FOXO3a/p27kip1 expression and essential role after acute spinal cord injury in adult rat. J Cell Biochem 114:354–365. doi: 10.1002/jcb.24371 CrossRefPubMedGoogle Scholar
  22. 22.
    Basso DM, Beattie MS, Bresnahan JC (1995) A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma 12:1–21CrossRefPubMedGoogle Scholar
  23. 23.
    Dumont RJ, Okonkwo DO, Verma S, Hurlbert RJ, Boulos PT, Ellegala DB, Dumont AS (2001) Acute spinal cord injury, part I: pathophysiologic mechanisms. Clin Neuropharmacol 24:254–264CrossRefPubMedGoogle Scholar
  24. 24.
    Tator CH (1996) Experimental and clinical studies of the pathophysiology and management of acute spinal cord injury. J Spinal Cord Med 19:206–214CrossRefPubMedGoogle Scholar
  25. 25.
    Wei H, Teng H, Huan W, Zhang S, Fu H, Chen F, Wang J, Wu C, Zhao J (2012) An upregulation of SENP3 after spinal cord injury: implications for neuronal apoptosis. Neurochem Res 37:2758–2766. doi: 10.1007/s11064-012-0869-z CrossRefPubMedGoogle Scholar
  26. 26.
    Cheng C, Gao S, Zhao J, Niu S, Chen M, Li X, Qin J, Shi S, Guo Z, Shen A (2008) Spatiotemporal patterns of postsynaptic density (PSD)-95 expression after rat spinal cord injury. Neuropathol Appl Neurobiol 34:340–356. doi: 10.1111/j.1365-2990.2007.00917.x CrossRefPubMedGoogle Scholar
  27. 27.
    Byrnes KR, Stoica BA, Fricke S, Di Giovanni S, Faden AI (2007) Cell cycle activation contributes to post-mitotic cell death and secondary damage after spinal cord injury. Brain 130:2977–2992. doi: 10.1093/brain/awm179 CrossRefPubMedGoogle Scholar
  28. 28.
    Chen M, Xia X, Zhu X, Cao J, Xu D, Ni Y, Liu Y, Yan S, Cheng X, Liu Y, Wang Y (2014) Expression of SGTA correlates with neuronal apoptosis and reactive gliosis after spinal cord injury. Cell Tissue Res 358:277–288. doi: 10.1007/s00441-014-1946-1 CrossRefPubMedGoogle Scholar
  29. 29.
    Watanabe Y, Toyota M, Kondo Y, Suzuki H, Imai T, Ohe-Toyota M, Maruyama R, Nojima M, Sasaki Y, Sekido Y, Hiratsuka H, Shinomura Y, Imai K, Itoh F, Tokino T (2007) PRDM5 identified as a target of epigenetic silencing in colorectal and gastric cancer. Clin Cancer Res 13:4786–4794. doi: 10.1158/1078-0432.CCR-07-0305 CrossRefPubMedGoogle Scholar
  30. 30.
    Shu XS (2015) Emerging role of PR domain containing 5 (PRDM5) as a broad tumor suppressor in human cancers. Tumour Biol 36:1–3. doi: 10.1007/s13277-014-2916-7 CrossRefPubMedGoogle Scholar
  31. 31.
    Rubin LL, Philpott KL, Brooks SF (1993) Apoptosis: the cell cycle cell death. Curr Biol 3:391–394CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Jie Liu
    • 1
  • Weijie Wu
    • 1
  • Jie Hao
    • 1
  • Mingchen Yu
    • 1
  • Jin Liu
    • 1
  • Xinlei Chen
    • 1
  • Rong Qian
    • 1
  • Feng Zhang
    • 1
    Email author
  1. 1.Department of OrthopaedicsAffiliated Hospital of Nantong UniversityNantongChina

Personalised recommendations