Skip to main content

Advertisement

Log in

Intrathecal Injection of Human Umbilical Cord-Derived Mesenchymal Stem Cells Ameliorates Neuropathic Pain in Rats

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Neuropathic pain (NP) is a clinically incurable disease with miscellaneous causes, complicated mechanisms and available therapies show poor curative effect. Some recent studies have indicated that neuroinflammation plays a vital role in the occurrence and promotion of NP and anti-inflammatory therapy has the potential to relieve the pain. During the past decades, mesenchymal stem cells (MSCs) with properties of multipotentiality, low immunogenicity and anti-inflammatory activity have showed excellent therapeutic effects in cell therapy from animal models to clinical application, thus aroused great attention. However there are no reports about the effect of intrathecal human umbilical cord-derived mesenchymal stem cells (HUC-MSCs) on NP which is induced by peripheral nerve injury. Therefore, in this study, intrathecally transplanted HUC-MSCs were utilized to examine the effect on neuropathic pain induced by a rat model with spinal nerve ligation (SNL), so as to explore the possible mechanism of those effects. As shown in the results, the HUC-MSCs transplantation obviously ameliorated SNL-induced mechanical allodynia and thermal hyperalgesia, which was related to the inhibiting process of neuroinflammation, including the suppression of activated astrocytes and microglia, as well as the significant reduction of pro-inflammatory cytokines Interleukin-1β (IL-1β) and Interleukin −17A (IL-17A) and the up-regulation of anti-inflammatory cytokine Interleukin −10 (IL-10). Therefore, through the effect on glial cells, pro-inflammatory and anti-inflammatory cytokine, the targeting intrathecal HUC-MSCs may offer a novel treatment strategy for NP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jensen TS, Baron R, Haanpaa M, Kalso E, Loeser JD, Rice AS, Treede RD (2011) A new definition of neuropathic pain. Pain 152:2204–2205

    Article  PubMed  Google Scholar 

  2. Gilron I, Jensen TS, Dickenson AH (2013) Combination pharmacotherapy for management of chronic pain: from bench to bedside. Lancet Neurol 12:1084–1095

    Article  CAS  PubMed  Google Scholar 

  3. Attal N, Bouhassira D (2015) Pharmacotherapy of neuropathic pain: which drugs, which treatment algorithms? Pain 156(Suppl 1):S104–S114

    Article  PubMed  Google Scholar 

  4. Matsuo H, Uchida K, Nakajima H, Guerrero AR, Watanabe S, Takeura N, Sugita D, Shimada S, Nakatsuka T, Baba H (2014) Early transcutaneous electrical nerve stimulation reduces hyperalgesia and decreases activation of spinal glial cells in mice with neuropathic pain. Pain 155:1888–1901

    Article  CAS  PubMed  Google Scholar 

  5. Gao YJ, Ji RR (2010) Chemokines, neuronal-glial interactions, and central processing of neuropathic pain. Pharmacol Ther 126:56–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yamamoto Y, Terayama R, Kishimoto N, Maruhama K, Mizutani M, Iida S, Sugimoto T (2015) Activated microglia contribute to convergent nociceptive inputs to spinal dorsal horn neurons and the development of neuropathic pain. Neurochem Res 40:1000–1012

    Article  CAS  PubMed  Google Scholar 

  7. Svensson CI, Brodin E (2010) Spinal astrocytes in pain processing: non-neuronal cells as therapeutic targets. Mol Interv 10:25–38

    Article  CAS  PubMed  Google Scholar 

  8. Otoshi K, Kikuchi S, Konno S, Sekiguchi M (2010) The reactions of glial cells and endoneurial macrophages in the dorsal root ganglion and their contribution to pain-related behavior after application of nucleus pulposus onto the nerve root in rats. Spine (Phila Pa 1976) 35:264–271

    Article  Google Scholar 

  9. Knaan-Shanzer S (2014) Concise review: the immune status of mesenchymal stem cells and its relevance for therapeutic application. Stem Cells 32:603–608

    Article  PubMed  Google Scholar 

  10. Franchi S, Castelli M, Amodeo G, Niada S, Ferrari D, Vescovi A, Brini AT, Panerai AE, Sacerdote P (2014) Adult stem cell as new advanced therapy for experimental neuropathic pain treatment. Biomed Res Int 2014:470983

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fortino VR, Pelaez D, Cheung HS (2013) Concise review: stem cell therapies for neuropathic pain. Stem Cells Transl Med 2:394–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Siniscalco D, Giordano C, Galderisi U, Luongo L, Alessio N, Di Bernardo G, de Novellis V, Rossi F, Maione S (2010) Human mesenchymal stem cells as novel neuropathic pain tool. J Stem Cells Regen Med 6:127

    CAS  PubMed  Google Scholar 

  13. Shi Y, Su J, Roberts AI, Shou P, Rabson AB, Ren G (2012) How mesenchymal stem cells interact with tissue immune responses. Trends Immunol 33:136–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Quaranta P, Focosi D, Di Iesu M, Cursi C, Zucca A, Curcio M, Lapi S, Boldrini L, Stampacchia G, Paolicchi A, Scatena F, Freer G, Pistello M (2016) Human Wharton’s jelly-derived mesenchymal stromal cells engineered to secrete Epstein-Barr virus interleukin-10 show enhanced immunosuppressive properties. CytoTherapy 18:205–218

    Article  CAS  PubMed  Google Scholar 

  15. Soleymaninejadian E, Pramanik K, Samadian E (2012) Immunomodulatory properties of mesenchymal stem cells: cytokines and factors. Am J Reprod Immunol 67:1–8

    Article  CAS  PubMed  Google Scholar 

  16. Petrie AC, Tuan RS (2010) Therapeutic potential of the immunomodulatory activities of adult mesenchymal stem cells. Birth Defects Res C Embryo Today 90:67–74

    Article  Google Scholar 

  17. Musolino PL, Coronel MF, Hokfelt T, Villar MJ (2007) Bone marrow stromal cells induce changes in pain behavior after sciatic nerve constriction. Neurosci Lett 418:97–101

    Article  CAS  PubMed  Google Scholar 

  18. Siniscalco D, Giordano C, Galderisi U, Luongo L, de Novellis V, Rossi F, Maione S (2011) Long-lasting effects of human mesenchymal stem cell systemic administration on pain-like behaviors, cellular, and biomolecular modifications in neuropathic mice. Front Integr Neurosci 5:79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim DW, Staples M, Shinozuka K, Pantcheva P, Kang SD, Borlongan CV (2013) Wharton’s jelly-derived mesenchymal stem cells: phenotypic characterization and optimizing their therapeutic potential for clinical applications. Int J Mol Sci 14:11692–11712

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mitchell KE, Weiss ML, Mitchell BM, Martin P, Davis D, Morales L, Helwig B, Beerenstrauch M, Abou-Easa K, Hildreth T, Troyer D, Medicetty S (2003) Matrix cells from Wharton’s jelly form neurons and glia. Stem Cells 21:50–60

    Article  CAS  PubMed  Google Scholar 

  21. Liu X, Liu H, Xu S, Tang Z, Xia W, Cheng Z, Li W, Jin Y (2016) Spinal translocator protein alleviates chronic neuropathic pain behavior and modulates spinal astrocyte-neuronal function in rats with L5 spinal nerve ligation model. Pain 157:103–116

    Article  CAS  PubMed  Google Scholar 

  22. Austin TM, Delpire E (2011) Inhibition of KCC2 in mouse spinal cord neurons leads to hypersensitivity to thermal stimulation. Anesth Analg 113:1509–1515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fu YS, Cheng YC, Lin MY, Cheng H, Chu PM, Chou SC, Shih YH, Ko MH, Sung MS (2006) Conversion of human umbilical cord mesenchymal stem cells in Wharton’s jelly to dopaminergic neurons in vitro: potential therapeutic application for Parkinsonism. Stem Cells 24:115–124

    Article  PubMed  Google Scholar 

  24. Yao CY, Weng ZL, Zhang JC, Feng T, Lin Y, Yao S (2015) Interleukin-17A acts to maintain neuropathic pain through activation of camkii/creb signaling in spinal neurons. Mol Neurobiol 10:1007

    Google Scholar 

  25. Klass M, Gavrikov V, Drury D, Stewart B, Hunter S, Denson DD, Hord A, Csete M (2007) Intravenous mononuclear marrow cells reverse neuropathic pain from experimental mononeuropathy. Anesth Analg 104:944–948

    Article  PubMed  Google Scholar 

  26. Meirelles LS, Nardi NB (2009) Methodology, biology and clinical applications of mesenchymal stem cells. Front Biosci (Landmark Ed) 14:4281–4298

    Article  CAS  Google Scholar 

  27. Mesentier-Louro LA, Zaverucha-do-Valle C, Rosado-de-Castro PH, Silva-Junior AJ, Pimentel-Coelho PM, Mendez-Otero R, Santiago MF (2016) Bone marrow-derived cells as a therapeutic approach to optic nerve diseases. Stem Cells Int 2016:5078619

    Article  PubMed  Google Scholar 

  28. Vaquero J, Zurita M, Oya S, Santos M (2006) Cell therapy using bone marrow stromal cells in chronic paraplegic rats: systemic or local administration? Neuroscilett 398:129–134

    CAS  Google Scholar 

  29. Amemori T, Jendelova P, Ruzickova K, Arboleda D, Sykova E (2010) Co-transplantation of olfactory ensheathing glia and mesenchymal stromal cells does not have synergistic effects after spinal cord injury in the rat. CytoTherapy 12:212–225

    Article  CAS  PubMed  Google Scholar 

  30. Urdzikova L, Jendelova P, Glogarova K, Burian M, Hajek M, Sykova E (2006) Transplantation of bone marrow stem cells as well as mobilization by granulocyte-colony stimulating factor promotes recovery after spinal cord injury in rats. J Neurotrauma 23:1379–1391

    Article  PubMed  Google Scholar 

  31. Lee KH, Suh-Kim H, Choi JS, Jeun SS, Kim EJ, Kim SS, Yoon DH, Lee BH (2007) Human mesenchymal stem cell transplantation promotes functional recovery following acute spinal cord injury in rats. Acta Neurobiol Exp (Wars) 67:13–22

    Google Scholar 

  32. Schafer S, Berger JV, Deumens R, Goursaud S, Hanisch UK, Hermans E (2014) Influence of intrathecal delivery of bone marrow-derived mesenchymal stem cells on spinal inflammation and pain hypersensitivity in a rat model of peripheral nerve injury. J Neuroinflammation 11:157

    Article  PubMed  PubMed Central  Google Scholar 

  33. Jeon YJ, Kim J, Cho JH, Chung HM, Chae JI (2016) Comparative analysis of human mesenchymal stem cells derived from bone marrow, placenta, and adipose tissue as sources of cell therapy. J Cell Biochem 117:1112–1125

    Article  CAS  PubMed  Google Scholar 

  34. Yousefifard M, Nasirinezhad F, Shardi MH, Janzadeh A, Hosseini M, Keshavarz M (2016) Human bone marrow-derived and umbilical cord-derived mesenchymal stem cells for alleviating neuropathic pain in a spinal cord injury model. Stem Cell Res Ther 7:36

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bonfield TL, Koloze M, Lennon DP, Zuchowski B, Yang SE, Caplan AI (2010) Human mesenchymal stem cells suppress chronic airway inflammation in the murine ovalbumin asthma model. Am J Physiol Lung Cell Mol Physiol 299:L760–L770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang R, Liu Y, Yan K, Chen L, Chen XR, Li P, Chen FF, Jiang XD (2013) Anti-inflammatory and immunomodulatory mechanisms of mesenchymal stem cell transplantation in experimental traumatic brain injury. J Neuroinflammation 10:106

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Ho MS, Mei SH, Stewart DJ (2015) The Immunomodulatory and therapeutic effects of mesenchymal stromal cells for acute lung injury and sepsis. J Cell Physiol 230:2606–2617

    Article  CAS  PubMed  Google Scholar 

  38. Meirelles LS, Fontes AM, Covas DT, Caplan AI (2009) Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev 20:419–427

    Article  CAS  Google Scholar 

  39. Calvo M, Dawes JM, Bennett DL (2012) The role of the immune system in the generation of neuropathic pain. Lancet Neurol 11:629–642

    Article  CAS  PubMed  Google Scholar 

  40. Taylor AR, Welsh CJ, Young C, Spoor E, Kerwin SC, Griffin JF, Levine GJ, Cohen ND, Levine JM (2014) Cerebrospinal fluid inflammatory cytokines and chemokines in naturally occurring canine spinal cord injury. J Neurotrauma 31:1561–1569

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ziebell JM, Morganti-Kossmann MC (2010) Involvement of pro- and anti-inflammatory cytokines and chemokines in the pathophysiology of traumatic brain injury. Neurotherapy 7:22–30

    Article  CAS  Google Scholar 

  42. Liu H, Dolkas J, Hoang K, Angert M, Chernov AV, Remacle AG, Shiryaev SA, Strongin AY, Nishihara T, Shubayev VI (2015) The alternatively spliced fibronectin CS1 isoform regulates IL-17A levels and mechanical allodynia after peripheral nerve injury. J Neuroinflammation 12:158

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kiguchi N, Kobayashi Y, Kishioka S (2012) Chemokines and cytokines in neuroinflammation leading to neuropathic pain. Curr Opin Pharmacol 12:55–61

    Article  CAS  PubMed  Google Scholar 

  44. Ishikawa T, Miyagi M, Kamoda H, Orita S, Eguchi Y, Arai G, Suzuki M, Sakuma Y, Oikawa Y, Inoue G, Aoki Y, Toyone T, Takahashi K, Ohtori S (2013) Differences between tumor necrosis factor-alpha receptors types 1 and 2 in the modulation of spinal glial cell activation and mechanical allodynia in a rat sciatic nerve injury model. Spine (Phila Pa 1976) 38:11–16

    Article  Google Scholar 

  45. Berger JV, Knaepen L, Janssen SP, Jaken RJ, Marcus MA, Joosten EA, Deumens R (2011) Cellular and molecular insights into neuropathy-induced pain hypersensitivity for mechanism-based treatment approaches. Brain Res Rev 67:282–310

    Article  CAS  PubMed  Google Scholar 

  46. Sato KL, Johanek LM, Sanada LS, Sluka KA (2014) Spinal cord stimulation reduces mechanical hyperalgesia and glial cell activation in animals with neuropathic pain. Anesth Analg 118:464–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ni HD, Yao M, Huang B, Xu LS, Zheng Y, Chu YX, Wang HQ, Liu MJ, Xu SJ, Li HB (2016) Glial activation in the periaqueductal gray promotes descending facilitation of neuropathic pain through the p38 MAPK signaling pathway. J Neurosci Res 94:50–61

    Article  CAS  PubMed  Google Scholar 

  48. Tenorio G, Kulkarni A, Kerr BJ (2013) Resident glial cell activation in response to perispinal inflammation leads to acute changes in nociceptive sensitivity: implications for the generation of neuropathic pain. Pain 154:71–81

    Article  PubMed  Google Scholar 

  49. Siniscalco D, Giordano C, Galderisi U, Luongo L, Alessio N, Di Bernardo G, de Novellis V, Rossi F, Maione S (2010) Intra-brain microinjection of human mesenchymal stem cells decreases allodynia in neuropathic mice. Cell Mol Life Sci 67:655–669

    Article  CAS  PubMed  Google Scholar 

  50. Kim H, Kim HY, Choi MR, Hwang S, Nam KH, Kim HC, Han JS, Kim KS, Yoon HS, Kim SH (2010) Dose-dependent efficacy of ALS-human mesenchymal stem cells transplantation into cisterna magna in SOD1-G93A ALS mice. Neuroscilett 468:190–194

    CAS  Google Scholar 

Download references

Acknowledgments

Support of this project was provided by Grant 81171274 and 81571075 (to Dr. Xiangdong Chen) from the National Natural Science Foundation of China (Beijing, China).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangdong Chen.

Ethics declarations

Conflict of Interest

We declare that there have been no conflicts of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Chen, F., Yao, C. et al. Intrathecal Injection of Human Umbilical Cord-Derived Mesenchymal Stem Cells Ameliorates Neuropathic Pain in Rats. Neurochem Res 41, 3250–3260 (2016). https://doi.org/10.1007/s11064-016-2051-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-016-2051-5

Keywords

Navigation