Advertisement

Neurochemical Research

, Volume 41, Issue 10, pp 2627–2635 | Cite as

MicroRNA-93 Downregulation Ameliorates Cerebral Ischemic Injury Through the Nrf2/HO-1 Defense Pathway

  • Peng Wang
  • Xinyu Liang
  • Yijun Lu
  • Xingjian Zhao
  • Jia LiangEmail author
Original Paper

Abstract

The present study was designed to evaluate the potential role of miR-93 in cerebral ischemic/reperfusion (I/R) injury in mice. The stroke model was produced in C57BL/6 J mice via middle cerebral artery occlusion (MCAO) for 1 h followed by reperfusion. And miR-93 antagomir was transfected to down-regulate the miR-93 level. Our results showed that miR-93 levels in the cerebral cortex of mice increased at 24 and 48 h after reperfusion. Importantly, in vivo study demonstrated that treatment with miR-93 antagomir reduced cerebral infarction volume, neural apoptosis and restored the neurological scores. In vitro study demonstrated that miR-93 antagomir attenuated hydrogen peroxide (H2O2)-induced injury. Moreover, miR-93 antagomir suppressed oxidative stress in I/R brain and H2O2 treated cortical neurons. Furthermore, we founded that down-regulation of miR-93 increased the expression of nuclear factor erythroid 2-related factor (Nrf2) and heme oxygenase-1 (HO-1) and the luciferase reporter assay confirmed that miR-93 directly binds to the predicted 3′-UTR target sites of the nrf2 gene. Finally, we found that knockdown of Nrf2 or HO-1 abolished miR-93 antagomir-induced neuroprotection against oxidative stress in H2O2 treated neuronal cultures. These results suggested that miR-93 antagomir alleviates ischemic injury through the Nrf2/HO-1 antioxidant pathway.

Keywords

MiR-93 Nrf2 HO-1 Oxidative stress Ischemic stroke 

Notes

Acknowledgments

This work was supported by Grants from the National Natural Science Foundation of China (NSFC) (Grant No. 81501017), Innovation Foundation for the Unversity Students (Grant No. 201510160000013) and the President Foundation of Jinzhou Medical University (Grant No. XZJJ20140105, XZJJ2015012). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Compliance with Ethical Standards

Conflict of Interest

The authors confirm that there are no conflicts.

References

  1. 1.
    Moskowitz MA, Lo EH, Iadecola C (2010) The science of stroke: mechanisms in search of treatments. Neuron 67:181–198CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Jung JE, Kim GS, Chen H, Maier CM, Narasimhan P, Song YS, Niizuma K, Katsu M, Okami N, Yoshioka H, Sakata H, Goeders CE, Chan PH (2010) Reperfusion and neurovascular dysfunction in stroke: from basic mechanisms to potential strategies for neuroprotection. Mol Neurobiol 41:172–179CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Nguyen T, Nioi P, Pickett CB (2009) The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. J Biol Chem 284:13291–13295CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Keum YS, Choi BY (2014) Molecular and chemical regulation of the Keap1-Nrf2 signaling pathway. Molecules 19:10074–10089CrossRefPubMedGoogle Scholar
  5. 5.
    Shah ZA, Li RC, Ahmad AS, Kensler TW, Yamamoto M, Biswal S, Dore S (2010) The flavanol (−)-epicatechin prevents stroke damage through the Nrf2/HO1 pathway. J Cereb Blood Flow Metab 30:1951–1961CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ding Y, Chen M, Wang M, Wang M, Zhang T, Park J, Zhu Y, Guo C, Jia Y, Li Y, Wen A (2014) Neuroprotection by acetyl-11-keto-beta-Boswellic acid, in ischemic brain injury involves the Nrf2/HO-1 defense pathway. Sci Rep 4:7002CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Alfieri A, Srivastava S, Siow RC, Cash D, Modo M, Duchen MR, Fraser PA, Williams SC, Mann GE (2013) Sulforaphane preconditioning of the Nrf2/HO-1 defense pathway protects the cerebral vasculature against blood–brain barrier disruption and neurological deficits in stroke. Free Radic Biol Med 65:1012–1022CrossRefPubMedGoogle Scholar
  8. 8.
    Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Fasanaro P, Greco S, Ivan M, Capogrossi MC, Martelli F (2010) microRNA: emerging therapeutic targets in acute ischemic diseases. Pharmacol Ther 125:92–104CrossRefPubMedGoogle Scholar
  10. 10.
    Huang Y, Shen XJ, Zou Q, Zhao QL (2010) Biological functions of microRNAs. Bioorg Khim 36:747–752PubMedGoogle Scholar
  11. 11.
    Zhao Y, Srivastava D (2007) A developmental view of microRNA function. Trends Biochem Sci 32:189–197CrossRefPubMedGoogle Scholar
  12. 12.
    Dharap A, Bowen K, Place R, Li LC, Vemuganti R (2009) Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. J Cereb Blood Flow Metab 29:675–687CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Tan JR, Koo YX, Kaur P, Liu F, Armugam A, Wong PT, Jeyaseelan K (2011) microRNAs in stroke pathogenesis. Curr Mol Med 11:76–92CrossRefPubMedGoogle Scholar
  14. 14.
    Rink C, Khanna S (2011) MicroRNA in ischemic stroke etiology and pathology. Physiol Genomics 43:521–528CrossRefPubMedGoogle Scholar
  15. 15.
    Zhang JF, Shi LL, Zhang L, Zhao ZH, Liang F, Xu X, Zhao LY, Yang PB, Zhang JS, Tian YF (2016) MicroRNA-25 negatively regulates cerebral ischemia/reperfusion injury-induced cell apoptosis through Fas/FasL pathway. J Mol Neurosci. doi: 10.1007/s12031-016-0712-0 Google Scholar
  16. 16.
    Fabbri E, Borgatti M, Montagner G, Bianchi N, Finotti A, Lampronti I, Bezzerri V, Dechecchi MC, Cabrini G, Gambari R (2014) Expression of microRNA-93 and Interleukin-8 during Pseudomonas aeruginosa-mediated induction of proinflammatory responses. Am J Respir Cell Mol Biol 50:1144–1155CrossRefPubMedGoogle Scholar
  17. 17.
    Singh B, Ronghe AM, Chatterjee A, Bhat NK, Bhat HK (2013) MicroRNA-93 regulates NRF2 expression and is associated with breast carcinogenesis. Carcinogenesis 34:1165–1172CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Rouse M, Rao R, Nagarkatti M, Nagarkatti PS (2014) 3,3′-Diindolylmethane ameliorates experimental autoimmune encephalomyelitis by promoting cell cycle arrest and apoptosis in activated T cells through microRNA signaling pathways. J Pharmacol Exp Ther 350:341–352CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Han RQ, Ouyang YB, Xu L, Agrawal R, Patterson AJ, Giffard RG (2009) Postischemic brain injury is attenuated in mice lacking the beta2-adrenergic receptor. Anesth Analg 108:280–287CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Xiong X, Barreto GE, Xu L, Ouyang YB, Xie X, Giffard RG (2011) Increased brain injury and worsened neurological outcome in interleukin-4 knockout mice after transient focal cerebral ischemia. Stroke 42:2026–2032CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Rodriguez R, Santiago-Mejia J, Gomez C, San-Juan ER (2005) A simplified procedure for the quantitative measurement of neurological deficits after forebrain ischemia in mice. J Neurosci Methods 147:22–28CrossRefPubMedGoogle Scholar
  22. 22.
    Liu P, Zhao H, Wang R, Wang P, Tao Z, Gao L, Yan F, Liu X, Yu S, Ji X, Luo Y (2015) MicroRNA-424 protects against focal cerebral ischemia and reperfusion injury in mice by suppressing oxidative stress. Stroke 46:513–519CrossRefPubMedGoogle Scholar
  23. 23.
    Wang P, Liang J, Li Y, Li J, Yang X, Zhang X, Han S, Li S, Li J (2014) Down-regulation of miRNA-30a alleviates cerebral is-chemic injury through enhancing beclin 1-mediated autophagy. Neurochem Res 39:1279–1291CrossRefPubMedGoogle Scholar
  24. 24.
    Zhao H, Tao Z, Wang R, Liu P, Yan F, Li J, Zhang C, Ji X, Luo Y (2014) MicroRNA-23a-3p attenuates oxidative stress injury in a mouse model of focal cerebral ischemia-reperfusion. Brain Res 1592:65–72CrossRefPubMedGoogle Scholar
  25. 25.
    Wang L, Wang Q, Li HL, Han LY (2013) Expression of MiR200a, miR93, metastasis-related gene RECK and MMP2/MMP9 in human cervical carcinoma–relationship with prognosis. Asian Pac J Cancer Prev 14:2113–2118CrossRefPubMedGoogle Scholar
  26. 26.
    Kim BH, Hong SW, Kim A, Choi SH, Yoon SO (2013) Prognostic implications for high expression of oncogenic microRNAs in advanced gastric carcinoma. J Surg Oncol 107:505–510CrossRefPubMedGoogle Scholar
  27. 27.
    Ohta K, Hoshino H, Wang J, Ono S, Iida Y, Hata K, Huang SK, Colquhoun S, Hoon DS (2015) MicroRNA-93 activates c-Met/PI3K/Akt pathway activity in hepatocellular carcinoma by directly inhibiting PTEN and CDKN1A. Oncotarget 6:3211–3224CrossRefPubMedGoogle Scholar
  28. 28.
    Li G, Ren S, Su Z, Liu C, Deng T, Huang D, Tian Y, Qiu Y, Liu Y (2015) Increased expression of miR-93 is associated with poor prognosis in head and neck squamous cell carcinoma. Tumour Biol 36:3949–3956CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Montanini L, Lasagna L, Barili V, Jonstrup SP, Murgia A, Pazzaglia L, Conti A, Novello C, Kjems J, Perris R, Benassi MS (2012) MicroRNA cloning and sequencing in osteosarcoma cell lines: differential role of miR-93. Cell Oncol (Dordr) 35: 29–41CrossRefGoogle Scholar
  30. 30.
    Yang IP, Tsai HL, Hou MF, Chen KC, Tsai PC, Huang SW, Chou WW, Wang JY, Juo SH (2012) MicroRNA-93 inhibits tumor growth and early relapse of human colorectal cancer by affecting genes involved in the cell cycle. Carcinogenesis 33:1522–1530CrossRefPubMedGoogle Scholar
  31. 31.
    Tang Q, Zou Z, Zou C, Zhang Q, Huang R, Guan X, Li Q, Han Z, Wang D, Wei H, Gao X, Wang X (2015) MicroRNA-93 suppress colorectal cancer development via Wnt/beta-catenin pathway downregulating. Tumour Biol 36:1701–1710CrossRefPubMedGoogle Scholar
  32. 32.
    Tasoulis MK, Douzinas EE (2016) Hypoxemic reperfusion of ischemic states: an alternative approach for the attenuation of oxidative stress mediated reperfusion injury. J Biomed Sci 23:7CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Halladin NL (2015) Oxidative and inflammatory biomarkers of ischemia and reperfusion injuries. Dan Med J 62:B5054PubMedGoogle Scholar
  34. 34.
    Manzanero S, Santro T, Arumugam TV (2013) Neuronal oxidative stress in acute ischemic stroke: sources and contribution to cell injury. Neurochem Int 62:712–718CrossRefPubMedGoogle Scholar
  35. 35.
    Jiang S, Deng C, Lv J, Fan C, Hu W, Di S, Yan X, Ma Z, Liang Z, Yang Y (2016) Nrf2 Weaves an Elaborate Network of Neuroprotection Against Stroke. Mol Neurobiol. doi: 10.1007/s12035-016-9707-7 Google Scholar
  36. 36.
    Alfieri A, Srivastava S, Siow RC, Modo M, Fraser PA, Mann GE (2011) Targeting the Nrf2-Keap1 antioxidant defence pathway for neurovascular protection in stroke. J Physiol 589:4125–4136CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Peng Wang
    • 1
  • Xinyu Liang
    • 1
  • Yijun Lu
    • 1
  • Xingjian Zhao
    • 2
  • Jia Liang
    • 2
    Email author
  1. 1.Key Laboratory of Neurodegenerative Diseases of Liaoning Province and Department of NeurobiologyJinzhou Medical UniversityJinzhouChina
  2. 2.Key Laboratory of Molecular Cell Biology and New Drug DevelopmentJinzhou Medical UniversityJinzhouChina

Personalised recommendations