Advertisement

Neurochemical Research

, Volume 41, Issue 10, pp 2574–2584 | Cite as

Prenatal Exposure to Histone Deacetylase Inhibitors Affects Gene Expression of Autism-Related Molecules and Delays Neuronal Maturation

  • Takuya Kawanai
  • Yukio Ago
  • Ryo Watanabe
  • Aya Inoue
  • Atsuki Taruta
  • Yusuke Onaka
  • Shigeru Hasebe
  • Hitoshi Hashimoto
  • Toshio Matsuda
  • Kazuhiro TakumaEmail author
Original Paper

Abstract

Valproic acid (VPA) is a multi-target drug and an inhibitor of histone deacetylase (HDAC). We have previously demonstrated that prenatal exposure to VPA at embryonic day 12.5 (E12.5), but not at E14.5, causes autism-like behavioral abnormalities in male mouse offspring. We have also found that prenatal VPA exposure causes transient histone hyperacetylation in the embryonic brain, followed by decreased neuronal cell numbers in the prefrontal and somatosensory cortices after birth. In the present study, we examined whether prenatal HDAC inhibition affects neuronal maturation in primary mouse cortical neurons. Pregnant mice were injected intraperitoneally with VPA (500 mg/kg) and the more selective HDAC inhibitor trichostatin A (TSA; 500 µg/kg) at E12.5 or E14.5, and primary neuronal cultures were prepared from the cerebral cortices of their embryos. Prenatal exposure to VPA at E12.5, but not at E14.5, decreased total number, total length, and complexity of neuronal dendrites at 14 days in vitro (DIV). The effects of VPA weakened at 21 DIV. Exposure to TSA at E12.5, but not at E14.5, also delayed maturation of cortical neurons. In addition, real-time quantitative PCR revealed that the prenatal exposure to TSA decreased neuroligin-1 (Nlgn1), Shank2, and Shank3 mRNA levels and increased contactin-associated protein-like 2 mRNA level. The delay in neuronal maturation was also observed in Nlgn1-knockdown cells, which were transfected with Nlgn1 siRNA. These findings suggest that prenatal HDAC inhibition causes changes in gene expression of autism-related molecules linked to a delay of neuronal maturation.

Keywords

Valproic acid Trichostatin A HDAC inhibitor Neuroligin-1 Neuronal dendrites Neuronal maturation 

Abbreviations

ASD

Autism spectrum disorders

BSA

Bovine serum albumin

CNTNAP2 (Cntnap2)

Contactin-associated protein-like 2

DIV

Days in vitro

HDAC

Histone deacetylase

NLGN (Nlgn)

Neuroligin

Nlgn1

Neuroligin-1

NRXN1 (Nrxn1)

Neurexin-1

PBS

Phosphate-buffered saline

PTEN (Pten)

Phosphatase and tensin homolog deleted on chromosome 10

TSA

Trichostatin A

VPA

Valproic acid

Notes

Acknowledgments

This study was supported in part by KAKENHI (25460099 (YA), 26293020 (HH), 26670122 (HH), 15 H01288 (HH) and 15 K18874 (YO)), the Neuropsychiatry Drug Discovery Consortium established by Dainippon Sumitomo Pharma Co., Ltd. (Japan) with Osaka University (TM, HH), Takeda Science Foundation (Japan) (YA), Research Foundation for Pharmaceutical Sciences (Japan) (YA) and the Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers (HH).

Compliance with Ethical Standards

Conflict of Interest

The authors declare they have no conflict of interest.

Supplementary material

11064_2016_1969_MOESM1_ESM.pdf (68 kb)
Supplementary material 1 (PDF 68 KB)

References

  1. 1.
    Geschwind DH, Levitt P (2007) Autism spectrum disorders: developmental disconnection syndromes. Curr Opin Neurobiol 17(1):103–111. doi: 10.1016/j.conb.2007.01.009 PubMedCrossRefGoogle Scholar
  2. 2.
    Persico AM, Bourgeron T (2006) Searching for ways out of the autism maze: genetic, epigenetic and environmental clues. Trends Neurosci 29(7):349–358. doi: 10.1016/j.tins.2006.05.010 PubMedCrossRefGoogle Scholar
  3. 3.
    Stigler KA, McDonald BC, Anand A, Saykin AJ, McDougle CJ (2011) Structural and functional magnetic resonance imaging of autism spectrum disorders. Brain Res 1380:146–161. doi: 10.1016/j.brainres.2010.11.076 PubMedCrossRefGoogle Scholar
  4. 4.
    van Kooten IA, Palmen SJ, von Cappeln P, Steinbusch HW, Korr H, Heinsen H, Hof PR, van Engeland H (2008) Neurons in the fusiform gyrus are fewer and smammer in autism. Brain 131(Pt4):987–999. doi: 10.1093/brain/awn033 PubMedCrossRefGoogle Scholar
  5. 5.
    Henry TR (2003) The history of valproate in clinical neuroscience. Psychopharmacol Bull Suppl 2:5–16Google Scholar
  6. 6.
    Phiel CJ, Zhang F, Huang EY, Guenther MG, Lazar MA, Klein PS (2001) Histone deacetylase is a direct target of valproic acid, a potent anticonvulsant, mood stabilizer, and teratogen. J Biol Chem 276(39):36734–36741. doi: 10.1074/jbc.M101287200 PubMedCrossRefGoogle Scholar
  7. 7.
    Kazantsev AG, Thompson LM (2008) Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat Rev Drug Discov 7(10):854–868. doi: 10.1038/nrd2681 PubMedCrossRefGoogle Scholar
  8. 8.
    Williams G, King J, Cunningham M, Stephan M, Kerr B, Hersh JH (2001) Fetal valproate syndrome and autism: additional evidence of an association. Dev Med Child Neurol 43(3):202–206. doi: 10.1111/j.1469-8749.2001.tb00188.x PubMedCrossRefGoogle Scholar
  9. 9.
    Roullet FI, Wollaston L, Decatanzaro D, Foster JA (2010) Behavioral and molecular changes in the mouse in response to prenatal exposure to the anti-epileptic drug valproic acid. Neuroscience 170(2):514–522. doi: 10.1016/j.neuroscience.2010.06.069 PubMedCrossRefGoogle Scholar
  10. 10.
    Schneider T, Przewłocki R (2005) Behavioral alterations in rats prenatally exposure to valproic acid: animal model of autism. Neuropsychopharmacology 30(1):80–89. doi: 10.1038/sj.npp.1300518 PubMedCrossRefGoogle Scholar
  11. 11.
    Wagner GC, Reuhl KR, Cheh M, McRae P, Halladay AK (2006) A new neurobehavioral model of autism in mice: pre- and postnatal exposure to sodium valproate. J Autism Dev Disord 36(6):779–793. doi: 10.1007/s10803-006-0117-y PubMedCrossRefGoogle Scholar
  12. 12.
    Kataoka S, Takuma K, Hara Y, Maeda Y, Ago Y, Matsuda T (2013) Autism-like behaviours with transient histone hyperacetylation in mice treated prenatally with valproic acid. Int J Neuropsychopharmacol 16(1):91–103. doi: 10.1017/S1461145711001714 PubMedCrossRefGoogle Scholar
  13. 13.
    Gjørlund MD, Nielsen J, Pankratova S, Li S, Korshunova I, Bock E, Berezin V (2012) Neuroligin-1 induces neurite outgrowth through interaction with neurexin-1β and activation of fibroblast growth factor receptor-1. FASEB J 26(10):4174–4186. doi: 10.1096/fj.11-202242 PubMedCrossRefGoogle Scholar
  14. 14.
    Song JY, Ichtchenko K, Südhof TC, Brose N (1999) Neuroligin1 is a postsynaptic cell-adhesion molecule of excitatory synapses. Proc Natl Acad Sci USA 96(3):1100–1105. doi: 10.1073/pnas.96.3.1100 PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Sun C, Cheng MC, Qin R, Liao DL, Chen TT, Koong FJ, Chen G, Chen CH (2011) Identification and functional characterization of rare mutations of the neuroligin-2 gene (NLGN2) associated with schizophrenia. Hum Mol Genet 20(15):3042–3051. doi: 10.1093/hmg/ddr208 PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Ylisaukko-oja T, Rehnström K, Auranen M, Vanhala R, Alen R, Kempas E, Ellonen P, Turunen JA, Makkonen I, Riikonen R, Nieminen-von Wendt L, Peltonen L, Järvelä I (2005) Analysis of four neuroligin genes as candidates for autism. Eur J Hum Genet 13(12):1285–1292. doi: 10.1038/sj.ejhg.5201474 PubMedCrossRefGoogle Scholar
  17. 17.
    Ching MSL, Shen Y, Tan WH, Jeste SS, Morrow EM, Chen X, Mukaddes NM, Yoo SY, Hanson E, Hundley R, Austin C, Becker RE, Berry GT, Driscoll K, Engle EC, Friedman S, Gusella JF, Hisama FM, Irons MB, Lafiosca T, LeClair E, Miller DT, Neessen M, Picker JD, Rappaport L, Rooney CM, Sarco DP, Stoler JM, Walsh CA, Wolff RR, Zhang T, Nasir RH, Wu BL; Children’s Hospital Boston Genotype Phenotype Study Group (2010) Deletions of NRXN1 (neurexin-1) predispose to a wide spectrum of developmental disorders. Am J Med Genet 153B(4):937–947. doi: 10.1002/ajmg.b.31063 PubMedPubMedCentralGoogle Scholar
  18. 18.
    Arking DE, Cutler DJ, Brune CW, Teslovich TM, West K, Ikeda M, Rea A, Guy M, Lin S, Cook EH, Chakravarti A (2007) A common genetic variant in the neurexin superfamily member CNTNAP2 increases familial risk of autism. Am J Hum Genet 82(1):160–164. doi: 10.1016/j.ajhg.2007.09.015 CrossRefGoogle Scholar
  19. 19.
    Peñagarikano O, Abrahams BS, Herman EI, Winden KD, Gdalyahu A, Dong H, Sonnenblick LI, Gruver R, Almajano J, Bragin A, Golshani P, Trachtenberg JT, Peles E, Geschwind DH (2011) Absence of CNTNAP2 leads to epilepsy, neuronal migration abnormalities, and core autism-related deficits. Cell 147(1):235–246. doi: 10.1016/j.cell.2011.08.040 PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Berkel S, Marshall CR, Weiss B, Howe J, Roeth R, Moog U, Endris V, Roberts W, Szatmari P, Pinto D, Bonin M, Riess A, Engels H, Sprengel R, Scherer SW, Rappold GA (2010) Mutations in the SHANK2 synaptic scaffolding gene in autism spectrum disorder and mental retardation. Nat Genet 42(6):489–491. doi: 10.1038/ng.589 PubMedCrossRefGoogle Scholar
  21. 21.
    Moessner R, Marshall CR, Sutcliffe JS, Skaug J, Pinto D, Vincent J, Zwaigenbaum L, Fernandez B, Roberts W, Szatmari P, Scherer SW (2007) Contribution of SHANK3 mutations to autism spectrum disorder. Am J Hum Genet 81(6):1289–1297. doi: 10.1086/522590 PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Kwon CH, Luikart BW, Powell CM, Zhou J, Matheny SA, Zhang W, Li Y, Baker SJ, Parada LF (2006) Pten regulates neuronal arborization and social interaction in mice. Neuron 50(3):377–388. doi: 10.1016/j.neuron.2006.03.023 PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Wyatt LA, Filbin MT, Keirstead HS (2014) PTEN inhibition enhances neurite outgrowth in human embryonic stem cell-derived neuronal progenitor cells. J Comp Neurol 522(12):2741–2755. doi: 10.1002/cne.23580 PubMedCrossRefGoogle Scholar
  24. 24.
    Nervi C, Borello U, Fazi F, Buffa V, Pelicci PG, Cossu G (2001) Inhibition of histone deacetylase activity by trichostatin A modulates gene expression during mouse embryogenesis without apparent toxicity. Cancer Res 61(4):1247–1249PubMedGoogle Scholar
  25. 25.
    Takuma K, Fang F, Zhang W, Yan S, Fukuzaki E, Du H (2009) RAGE-mediated signaling contributes to intraneuronal transport of amyloid-β and neuronal dysfunction. Proc Natl Acad Sci USA 106(47):20021–20026. doi: 10.1073/pnas.0905686106 PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Price RD, Oe T, Yamaji T, Matsuoka N (2006) A simple, flexible, nonfluorescent system for the automated screening of neurite outgrowth. J Biomol Screen 11(2):155–164. doi: 10.1177/1087057105283344 PubMedCrossRefGoogle Scholar
  27. 27.
    Kita Y, Ago Y, Takano E, Fukada A, Takuma K, Matsuda T (2013) Galantamine increases hippocampal insulin-like growth factor 2 expression via α7 nicotinic acetylcholine receptors in mice. Psychopharmacology (Berl) 225(3):543–551. doi: 10.1007/s00213-012-2841-7 CrossRefGoogle Scholar
  28. 28.
    Takuma K, Hara Y, Kataoka S, Kawanai T, Maeda Y, Watanabe R, Takano E, Hayata-Takano A, Hashimoto H, Ago Y, Matsuda T (2014) Chronic treatment with valproic acid or sodium butyrate attenuates novel object recognition deficits and hippocampal dendritic spine loss in a mouse model of autism. Pharmacol Biochem Behav 126:43–49. doi: 10.1016/j.pbb.2014.08.013 PubMedCrossRefGoogle Scholar
  29. 29.
    van Lookeren Campagne M, Dotti CG, Verkleij AJ, Gispen WH, Oestreicher AB (1992) Redistribution of B-50/growth-associated protein 43 during differentiation and maturation of rat hippocampal neurons in vitro. Neuroscience 51(3):601–619. doi: 10.1016/0306-4522(92)90300-Q CrossRefGoogle Scholar
  30. 30.
    Zhou X, Moon C, Zheng F, Luo Y, Soellner D, Nuñez JL, Wang H (2009) N-methyl-d-aspartate-stimulated ERK1/2 signaling and the transcriptional up-regulation of plasticity-related genes are developmentally regulated following in vitro neuronal maturation. J Neurosci Res 87(12):2632–2644. doi: 10.1002/jnr.22103 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Gardner A, Jukkola P, Gu C (2012) Myelination of rodent hippocampal neurons in culture. Nat Protoc 7(10):1774–1782. doi: 10.1038/nprot.2012.100 PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Banerjee S, Riordan M, Bhat MA (2014) Genetic aspects of autism spectrum disorders: insights from animal models. Front Cell Neurosci 8:58. doi: 10.3389/fncel.2014.00058 PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Hu WF, Chahrour MH, Walsh CA (2014) The diverse genetic landscape of neurodevelopmental disorders. Annu Rev Genomics Hum Genet 15:195–213. doi: 10.1146/annurev-genom-090413-025600 PubMedCrossRefGoogle Scholar
  34. 34.
    Penzes P, Buonanno A, Passafaro M, Sala C, Sweet RA (2013) Developmental vulnerability of synapses and circuits associated with neuropsychiatric disorders. J Neurochem 126(2):165–182. doi: 10.1111/jnc.12261 PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Südhof TC (2008) Neuroligins and neurexins link synaptic function to cognitive disease. Nature 455(7215):903–911. doi: 10.1038/nature07456 PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Sato D, Lionel AC, Leblond CS, Prasad A, Pinto D, Walker S, O’Connor I, Russell C, Drmic IE, Hamdan FF, Michaud JL, Endris V, Roeth R, Delorme R, Huguet G, Leboyer M, Rastam M, Gillberg C, Lathrop M, Stavropoulos DJ, Anagnostou E, Weksberg R, Fombonne E, Zwaigenbaum L, Fernandez BA, Roberts W, Rappold GA, Marshall CR, Bourgeron T, Szatmari P, Scherer SW (2012) SHANK1 deletions in males with autism spectrum disorder. Am J Hum Genet 90(5):879–887. doi: 10.1016/j.ajhg.2012.03.017 PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F, Nygren G, Rastam M, Gillberg IC, Anckarsäter H, Sponheim E, Goubran-Botros H, Delorme R, Chabane N, Mouren-Simeoni MC, de Mas P, Bieth E, Rogé B, Héron D, Burglen L, Gillberg C, Leboyer M, Bourgeron T (2007) Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet 39(1):25–27. doi: 10.1038/ng1933 PubMedCrossRefGoogle Scholar
  38. 38.
    Grabrucker AM, Knight MJ, Proepper C, Bockmann J, Joubert M, Rowan M Nienhaus GU, Garner CC, Bowie JU, Kreutz MR, Gundelfinger ED, Boeckers TM (2011) Concerted action of zinc and ProSAP/Shank in synaptogenesis and synapse maturation. EMBO J 30(3):569–581. doi: 10.1038/emboj.2010.336 PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Poot M, Beyer V, Schwaab I, Damatova N, Van’t Slot R, Prothero J, Holder SE, Haaf T (2010) Disruption of CNTNAP2 and additional structural genome changes in a boy with speech delay and autism spectrum disorder. Neurogenetics 11(1):81–89. doi: 10.1007/s10048-009-0205-1 PubMedCrossRefGoogle Scholar
  40. 40.
    Anderson GR, Galfin T, Xu W, Aoto J, Malenka RC, Südhof TC (2012) Candidate autism gene screen identifies critical role for cell-adhesion molecule CASPR2 in dendritic arborization and spine development. Proc Natl Acad Sci USA 109(44):18120–18125. doi: 10.1073/pnas.1216398109 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Takuya Kawanai
    • 1
    • 2
  • Yukio Ago
    • 1
    • 2
  • Ryo Watanabe
    • 1
  • Aya Inoue
    • 1
    • 2
  • Atsuki Taruta
    • 1
    • 2
  • Yusuke Onaka
    • 1
    • 2
  • Shigeru Hasebe
    • 1
    • 3
  • Hitoshi Hashimoto
    • 2
    • 4
  • Toshio Matsuda
    • 1
  • Kazuhiro Takuma
    • 1
    • 3
    • 4
    Email author
  1. 1.Laboratory of Medicinal Pharmacology, Graduate School of Pharmaceutical SciencesOsaka UniversitySuitaJapan
  2. 2.Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical SciencesOsaka UniversitySuitaJapan
  3. 3.Department of Pharmacology, Graduate School of DentistryOsaka UniversitySuitaJapan
  4. 4.United Graduate School of Child DevelopmentOsaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of FukuiSuitaJapan

Personalised recommendations