Advertisement

Ornithine and Homocitrulline Impair Mitochondrial Function, Decrease Antioxidant Defenses and Induce Cell Death in Menadione-Stressed Rat Cortical Astrocytes: Potential Mechanisms of Neurological Dysfunction in HHH Syndrome

Abstract

Hyperornithinemia–hyperammonemia–homocitrullinuria (HHH) syndrome is caused by deficiency of ornithine translocase leading to predominant tissue accumulation and high urinary excretion of ornithine (Orn), homocitrulline (Hcit) and ammonia. Although affected patients commonly present neurological dysfunction manifested by cognitive deficit, spastic paraplegia, pyramidal and extrapyramidal signs, stroke-like episodes, hypotonia and ataxia, its pathogenesis is still poorly known. Although astrocytes are necessary for neuronal protection. Therefore, in the present study we investigated the effects of Orn and Hcit on cell viability (propidium iodide incorporation), mitochondrial function (thiazolyl blue tetrazolium bromide—MTT—reduction and mitochondrial membrane potential—ΔΨm), antioxidant defenses (GSH) and pro-inflammatory response (NFkB, IL-1β, IL-6 and TNF-α) in unstimulated and menadione-stressed cortical astrocytes that were previously shown to be susceptible to damage by neurotoxins. We first observed that Orn decreased MTT reduction, whereas both amino acids decreased GSH levels, without altering cell viability and the pro-inflammatory factors in unstimulated astrocytes. Furthermore, Orn and Hcit decreased cell viability and ΔΨm in menadione-treated astrocytes. The present data indicate that the major compounds accumulating in HHH syndrome impair mitochondrial function and reduce cell viability and the antioxidant defenses in cultured astrocytes especially when stressed by menadione. It is presumed that these mechanisms may be involved in the neuropathology of this disease.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Sokoro AA, Lepage J, Antonishyn N, McDonald R, Rockman-Greenberg C, Irvine J, Lehotay DC (2010) Diagnosis and high incidence of hyperornithinemia-hyperammonemiahomocitrullinemia (HHH) syndrome in northern Saskatchewan. J Inherit Metab Dis 33(Suppl 3):275–281. doi:10.1007/s10545-010-9148-9

  2. 2.

    Korman SH, Kanazawa N, Abu-Libdeh B, Gutman A, Tsujino S (2004) Hyperornithinemia, hyperammonemia, and homocitrullinuria syndrome with evidence of mitochondrial dysfunction due to a novel SLC25A15 (ORNT1) gene mutation in a Palestinian family. J Neurol Sci 218:53–58. doi:10.1016/j.jns.2003.10.017

  3. 3.

    Shih VE, Ficicioglu C (2000) Genotype and phenotype findings in the hyperornithinemia, hyperammonemia, homocitrullinuria (HHH) syndrome. J Inherit Metab Dis 23(Suppl):72

  4. 4.

    Lemay JF, Lambert MA, Mitchell GA, Vanasse M, Valle D, Arbour JF, Dubé J, Flessas J, Laberge M, Lafleur L et al (1992) Hyperammonemia–hyperornithinemia–homocitrullinuria syndrome: neurologic, ophthalmologic, and neuropsychologic examination of six patients. J Pediatr 121(5 Pt 1):725–730

  5. 5.

    Al-Hassnan ZN, Rashed MS, Al-Dirbashi OY, Patay Z, Rahbeeni Z, Abu-Amero KK (2008) Hyperornithinemia–hyperammonemia–homocitrullinuria syndrome with stroke-like imaging presentation: clinical, biochemical and molecular analysis. J Neurol Sci 264:187–194. doi:10.1016/j.jns.2007.08.003

  6. 6.

    Martinelli D, Diodato D, Ponzi E, Monné M, Boenzi S, Bertini E, Fiermonte G, Dionisi-Vici C (2015) The hyperornithinemia–hyperammonemia–homocitrullinuria syndrome. Orphanet J Rare Dis 11:10–29. doi:10.1186/s13023-015-0242-9

  7. 7.

    Palmieri F (2014) Mitochondrial transporters of the SLC25 family and associated diseases: a review. J Inherit Metab Dis. 37(4):565–575. doi: 10.1007/s10545-014-9708-5

  8. 8.

    Camacho JA, Rioseco-Camacho N (2009) The human and mouse SLC25A29 mitochondrial transporters rescue the deficient ornithine metabolism in fibroblasts of patients with the hyperornithinemia–hyperammonemia–homocitrullinuria (HHH) syndrome. Pediatr Res 66(1):35–41. doi:10.1203/PDR.0b013e3181a283c1

  9. 9.

    Haust MD, Gordon BA (1980) Ultrastructural changes in the mitochondria in disorders in ornithine metabolism. Pediatr Res 14(12):1411

  10. 10.

    Haust MD, Gatfield PD, Gordon BA (1981) Ultrastructure of hepatic mitochondria in a child with hyperornithinemia, hyperammonemia, and homocitrullinuria. Hum Pathol 12:212–222

  11. 11.

    Fecarotta S, Parenti G, Vajro P, Zuppaldi A, Della Casa R, Carbone MT, Correra A, Torre G, Riva S, Dionisi-Vici C, Santorelli FM, Andria G (2006) HHH syndrome (hyperornithinaemia, hyperammonaemia, homocitrullinuria), with fulminant hepatitis-like presentation. J Inherit Metab Dis 29:186–189. doi:10.1007/s10545-006-0120-7

  12. 12.

    Kosenko E, Venediktova N, Kaminsky Y, Montoliu C, Felipo V (2003) Sources of oxygen radicals in brain in acute ammonia intoxication in vivo. Brain Res 981:193–200. doi:10.1016/S0006-8993(03)03035-X

  13. 13.

    Viegas CM, Tonin AM, Zanatta A, Seminotti B, Busanello EN, Fernandes CG, Moura AP, Leipnitz G, Wajner M (2012) Impairment of brain redox homeostasis caused by the major metabolites accumulating in hyperornithinemia–hyperammonemia–homocitrullinuria syndrome in vivo. Metab Brain Dis 27(4):521–530. doi:10.1007/s11011-012-9327-5

  14. 14.

    Viegas CM, Zanatta Â, Grings M, Hickmann FH, Monteiro WO, Soares LE, Sitta Â, Leipnitz G, de Oliveira FH, Wajner M (2014) Disruption of redox homeostasis and brain damage caused in vivo by methylmalonic acid and ammonia in cerebral cortex and striatum of developing rats. Free Radic Res 48(6):659–669. doi:10.3109/10715762.2014.898842

  15. 15.

    Norenberg MD, Rama Rao KV, Jayakumar AR (2005) Mechanisms of ammonia-induced astrocyte swelling. Metab Brain Dis 20(4):303–318. doi:10.1007/s11011-005-7911-7

  16. 16.

    Scott TR, Kronsten VT, Hughes RD, Shawcross DL (2013) Pathophysiology of cerebral oedema in acute liver failure. World J Gastroenterol 19(48):9240–9255. doi:10.3748/wjg.v19.i48.9240

  17. 17.

    Valle D, Simell O (2001) The hyperornithinemias. In: Scriver C, Beaudet A, Sly W, Valle D (eds) The metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill Professional, New York, pp 1147–1185

  18. 18.

    Amaral AU, Leipnitz G, Fernandes CG, Seminotti B, Zanatta A, Viegas CM, Dutra-Filho CS, Wajner M (2009) Evidence that the major metabolites accumulating in hyperornithinemia–hyperammonemia–homocitrullinuria syndrome induce oxidative stress in brain of young rats. Int J Dev Neurosci 7:635–641. doi:10.1016/j.ijdevneu.2009.08.004

  19. 19.

    Viegas CM, Zanatta A, Knebel LA, Schuck PF, Tonin AM, Ferreira Gda C, Amaral AU, Dutra-Filho CS, Wannmacher CM, Wajner M (2009) Experimental evidence that ornithine and homocitrulline disrupt energy metabolism in brain of young rats. Brain Res 1291:102–112. doi:10.1016/j.brainres.2009.07.021

  20. 20.

    Zanatta A, Viegas CM, Tonin AM, Busanello EN, Grings M, Moura AP, Leipnitz G, Wajner M (2013) Disturbance of redox homeostasis by ornithine and homocitrulline in rat cerebellum: a possible mechanism of cerebellar dysfunction in HHH syndrome. Life Sci 93:161–168. doi:10.1016/j.lfs.2013.06.013

  21. 21.

    Kahlert S, Reiser G (2004) Glial perspectives of metabolic states during cerebral hypoxia-calcium regulation and metabolic energy. Cell Calcium 36:295–302. doi:10.1016/j.ceca.2004.02.009

  22. 22.

    Takuma K, Baba A, Matsuda T (2004) Astrocyte apoptosis: implications for neuroprotection. Prog Neurobiol 72:111–127. doi:10.1016/j.pneurobio.2004.02.001

  23. 23.

    Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35. doi:10.1007/s00401-009-0619-8

  24. 24.

    Zhang D, Hu X, Qian L, O’Callaghan JP, Hong JS (2010) Astrogliosis in CNS pathologies: is there a role for microglia? Mol Neurobiol 41:232–241. doi:10.1007/s12035-010-8098-4

  25. 25.

    Hertz L, Zielke HR (2004) Astrocytic control of glutamatergic activity: astrocytes as stars of the show. Trends Neurosci 27:735–743. doi:10.1016/j.tins.2004.10.008

  26. 26.

    Hertz L, Peng L, Lai JC (1998) Functional studies in cultured astrocytes. Methods 16:293–310. doi:10.1006/meth.1998.0686

  27. 27.

    Lange SC, Bak LK, Waagepetersen HS, Schousboe A, Norenberg MD (2012) Primary cultures of astrocytes: their value in understanding astrocytes in health and disease. Neurochem Res 37:2569–2588. doi:10.1007/s11064-012-0868-0

  28. 28.

    Duthie SJ, Grant MH (1989) The role of reductive and oxidative metabolism in the toxicity of mitoxantrone, adriamycin and menadione in human liver derived Hep G2 hepatoma cells. Br J Cancer 60:566–571

  29. 29.

    Hockenbery DM, Oltvai ZN, Yin XM, Milliman CL, Korsmeyer SJ (1993) Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 22(75):241–251

  30. 30.

    Loor G, Kondapalli J, Schriewer JM, Chandel NS, Vanden Hoek TL, Schumacker PT (2010) Menadione triggers cell death through ROS-dependent mechanisms involving PARP activation without requiring apoptosis. Free Radic Biol Med 49:1925–1936. doi:10.1016/j.freeradbiomed.2010.09.021

  31. 31.

    Zolkipli Z, Pedersen CB, Lamhonwah AM, Gregersen N, Tein I (2011) Vulnerability to oxidative stress in vitro in pathophysiology of mitochondrial short-chain acyl-CoA dehydrogenase deficiency: response to antioxidants. PLoS ONE 6(4):e17534. doi:10.1371/journal.pone.0017534

  32. 32.

    Bobermin LD, Quincozes-Santos A, Guerra MC, Leite MC, Souza DG, Goncalves CA, Gottfried C (2012) Resveratrol prevents ammonia toxicity in astroglial cells. PLoS ONE 7:e52164. doi:10.1371/journal.pone.0052164

  33. 33.

    Reers M, Smiley ST, Mottola-Hartshorn C, Chen A, Lin M, Chen LB (1995) Mitochondrial membrane potential monitored by JC-1 dye. Methods Enzymol 260:406–417

  34. 34.

    Souza DG, Bellaver B, Souza DO, Quincozes-Santos A (2013) Characterization of adult rat astrocyte cultures. PLoS ONE 8:e60282. doi:10.1371/journal.pone.0060282

  35. 35.

    Lowry OH, Rosebrough NJ, Farr AL, Randal RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

  36. 36.

    Viegas CM, Busanello EN, Tonin AM, de Moura AP, Grings M, Ritter L, Schuck PF, Ferreira Gda C, Sitta A, Vargas CR, Wajner M (2011) Dual mechanism of brain damage induced in vivo by the major metabolites accumulating in hyperornithinemia–hyperammonemia–homocitrullinuria syndrome. Brain Res 1369:235–244. doi:10.1016/j.brainres.2010.10.112

  37. 37.

    Zanatta Â, Viegas CM, Hickmann FH, de Oliveira MonteiroW, Sitta A, de Moura CoelhoD, Vargas CR, Leipnitz G, Wajner M (2015) Ornithine in vivo administration disrupts redox homeostasis and decreases synaptic Na(+), K (+)-ATPase activity in cerebellum of adolescent rats: implications for the pathogenesis of hyperornithinemia–hyperammonemia–homocitrullinuria (HHH) syndrome. Cell Mol Neurobiol 35(6):797–806. doi:10.1007/s10571-015-0173-y

  38. 38.

    Anderson CM, Swanson RA (2000) Astrocyte glutamate transport: review of properties, regulation, and physiological functions. Glia 32:1–14. doi:10.1002/1098-1136(200010)32:1<1:AIDGLIA10>3.0.CO;2-W

  39. 39.

    Nedergaard M, Ransom B, Goldman SA (2003) New roles for astrocytes: redefining the functional architecture of the brain. Trends Neurosci 26:523–530. doi:10.1016/j.tins.2003.08.008

  40. 40.

    Wang DD, Bordey A (2008) The astrocyte odyssey. ProgNeurobiol 86:342–367. doi:10.1016/j.pneurobio.2008.09.015

  41. 41.

    Bélanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14:724–738. doi:10.1016/j.cmet.2011.08.016

  42. 42.

    Purpura KA, Bratt-Leal AM, Hammersmith KA, McDevitt TC, Zandstra PW (2012) Systematic engineering of 3D pluripotent stem cell niches to guide blood development. Biomaterials 33:1271–1280. doi:10.1016/j.biomaterials.2011.10.051

  43. 43.

    Ransom BR, Ransom CB (2012) Astrocytes: multitalented stars of the central nervous system. Methods Mol Biol 814:3–7. doi:10.1007/978-1-61779-452-0_1

  44. 44.

    Chen Y, Vartiainen NE, Ying W, Chan PH, Koistinaho J, Swanson RA (2001) Astrocytes protect neurons from nitric oxide toxicity by a glutathione-dependent mechanism. J Neurochem 77:1601–1610. doi:10.1046/j.1471-4159.2001.00374.x

  45. 45.

    Shih AY, Johnson DA, Wong G, Kraft AD, Jiang L, Erb H, Johnson JA, Murphy TH (2003) Coordinate regulation of glutathione biosynthesis and release by Nrf2-expressing glia potently protects neurons from oxidative stress. J Neurosci 23:3394–3406

  46. 46.

    Swanson RA, Ying W, Kauppinen TM (2004) Astrocyte influences on ischemic neuronal death. Curr Mol Med 4:193–205. doi:10.2174/1566524043479185

  47. 47.

    Vargas MR, Johnson DA, Sirkis DW, Messing A, Johnson JA (2008) Nrf2 activation in astrocytes protects against neurodegeneration in mouse models of familial amyotrophic lateral sclerosis. J Neurosci 28:13574–13581. doi:10.1523/JNEUROSCI.4099-08.2008

  48. 48.

    Dringen R (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol 62:649–671. doi:10.1016/S0301-0082(99)00060-X

  49. 49.

    Pope SA, Milton R, Heales SJ (2008) Astrocytes protect against copper-catalysed loss of extracellular glutathione. Neurochem Res 33:1410–1418. doi:10.1007/s11064-008-9602-3

  50. 50.

    Sarafian TA, Bredesen DE, Verity MA (1996) Cellular resistance to methylmercury. Neurotoxicology 17:27–36

  51. 51.

    Castoldi AF, Coccini T, Manzo L (2001) Biological markers of neurotoxic diseases. Funct Neurol 16:39–44

  52. 52.

    Tanabe K, Matsushima-Nishiwaki R, Yamaguchi S, Iida H, Dohi S, Kozawa O (2010) Mechanisms of tumor necrosis factor-alphainduced interleukin-6 synthesis in glioma cells. J Neuroinflammation 7:16. doi:10.1186/1742-2094-7-16

  53. 53.

    Tsai MJ, Lee EH (1994) Differences in the disposition and toxicity of 10-methyl-4-phenylpyridinium in cultured rat and mouse astrocytes. Glia 12:329–335. doi:10.1002/glia.440120409

  54. 54.

    Alarcón-Aguilar A, González-Puertos VY, Luna-Lopéz A, López-Macay A, Morán J, Santamaría A, Königsberg M (2014) Comparing the effects of two neurotoxins in cortical astrocytes obtained from rats of different ages: involvement of oxidative damage. J Appl Toxicol 34:127–138. doi:10.1002/jat.2841

Download references

Acknowledgments

This work was supported by Grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, No 470236/2012-4), Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS, No 10/0031-1), Pró-Reitoria de Pesquisa/Universidade Federal do Rio Grande do Sul (PROPESQ/UFRGS, No PIBITI 18489), Rede Instituto Brasileiro de Neurociência (IBN-Net) (No 01.06.0842-00), and Instituto Nacional de Ciência e Tecnologia em Excitotoxicidade e Neuroproteção (INCT-EN, No 573677/2008-5).

Author information

Correspondence to Moacir Wajner.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zanatta, Â., Rodrigues, M.D.N., Amaral, A.U. et al. Ornithine and Homocitrulline Impair Mitochondrial Function, Decrease Antioxidant Defenses and Induce Cell Death in Menadione-Stressed Rat Cortical Astrocytes: Potential Mechanisms of Neurological Dysfunction in HHH Syndrome. Neurochem Res 41, 2190–2198 (2016) doi:10.1007/s11064-016-1933-x

Download citation

Keywords

  • HHH syndrome
  • Ornithine
  • Homocitrulline
  • Mitochondrial function
  • Oxidative stress
  • Astrocytes