Neurochemical Research

, Volume 41, Issue 7, pp 1751–1760 | Cite as

Epigenetic Suppression of GADs Expression is Involved in Temporal Lobe Epilepsy and Pilocarpine-Induced Mice Epilepsy

  • Jin-Gang Wang
  • Qing Cai
  • Jun Zheng
  • Yu-Shu Dong
  • Jin-Jiang Li
  • Jing-Chen Li
  • Guang-Zhi Hao
  • Chao WangEmail author
  • Ju-Lei WangEmail author
Original Paper


Recent studies have shown that histone acetylation is involved with the regulation of enzyme glutamate decarboxylases (GADs), including GAD67 and GAD65. Here, we investigated the histone acetylation modifications of GADs in the pathogenesis of epilepsy and explored the therapeutic effect of a novel second-generation histone deacetylase inhibitor (HDACi) JNJ-26481585 in epilepsy animals. We revealed the suppression of GADs protein and mRNA level, and histone hypoacetylation in patients with temporal lobe epilepsy and pilocarpine-induced epilepsy mice model. Double-immunofluorescence also indicated that the hypoacetyl-H3 was located in hippocampal GAD67/GAD65 positive neurons in epilepsy mice. JNJ-26481585 significantly reversed the decrease of the GAD67/GAD65 both protein and mRNA levels, and the histone hypoacetylation of GABAergic neurons in epilepsy mice. Meanwhile, single-cell real-time PCR performed in GFP-GAD67/GAD65 transgenic mice demonstrated that JNJ-26481585 induced increase of GAD67/GAD65 mRNA level in GABAergic neurons. Furthermore, JNJ-26481585 significantly alleviated the epileptic seizures in mice model. Together, our findings demonstrate inhibition of GADs gene via histone acetylation plays an important role in the pathgenesis of epilepsy, and suggest JNJ-26481585 as a promising therapeutic strategy for epilepsy.


Epilepsy Histone acetylation HDAC GAD JNJ-26481585 Single-cell PCR 



This study was supported by Grants of the National Natural Science Foundation of China (Nos. 81201005, 81501115).


  1. 1.
    Dulac O, Milh M, Holmes GL (2013) Brain maturation and epilepsy. Handb Clin Neurol 111:441–446CrossRefPubMedGoogle Scholar
  2. 2.
    Holmes GL, Milh MD, Dulac O (2012) Maturation of the human brain and epilepsy. Handb Clin Neurol 107:135–143CrossRefPubMedGoogle Scholar
  3. 3.
    Mizielinska S, Greenwood S, Connolly CN (2006) The role of GABAA receptor biogenesis, structure and function in epilepsy. Biochem Soc Trans 34:863–867CrossRefPubMedGoogle Scholar
  4. 4.
    Jagirdar R, Drexel M, Kirchmair E, Tasan RO, Sperk G (2015) Rapid changes in expression of class I and IV histone deacetylases during epileptogenesis in mouse models of temporal lobe epilepsy. Exp Neurol 273:92–104CrossRefPubMedGoogle Scholar
  5. 5.
    Lusardi TA, Akula KK, Coffman SQ, Ruskin DN, Masino SA, Boison D (2015) Ketogenic diet prevents epileptogenesis and disease progression in adult mice and rats. Neuropharmacology 99:500–509CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Ritter C, Gobel CH, Liebig T, Kaminksy E, Fink GR, Lehmann HC (2015) An epigenetic cause of seizures and brain calcification: pseudohypoparathyroidism. Lancet 385:1802CrossRefPubMedGoogle Scholar
  7. 7.
    Parrish RR, Buckingham SC, Mascia KL, Johnson JJ, Matyjasik MM, Lockhart RM, Lubin FD (2015) Methionine increases BDNF DNA methylation and improves memory in epilepsy. Ann Clin Transl Neurol 2:401–416CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Miller-Delaney SF, Bryan K, Das S, McKiernan RC, Bray IM, Reynolds JP, Gwinn R, Stallings RL, Henshall DC (2015) Differential DNA methylation profiles of coding and non-coding genes define hippocampal sclerosis in human temporal lobe epilepsy. Brain J Neurol 138:616–631CrossRefGoogle Scholar
  9. 9.
    Kobow K, Blumcke I (2014) Epigenetic mechanisms in epilepsy. Prog Brain Res 213:279–316CrossRefPubMedGoogle Scholar
  10. 10.
    Hwang JY, Aromolaran KA, Zukin RS (2013) Epigenetic mechanisms in stroke and epilepsy. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 38:167–182CrossRefGoogle Scholar
  11. 11.
    Roopra A, Dingledine R, Hsieh J (2012) Epigenetics and epilepsy. Epilepsia 53(Suppl 9):2–10CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Belhedi N, Perroud N, Karege F, Vessaz M, Malafosse A, Salzmann A (2014) Increased CPA6 promoter methylation in focal epilepsy and in febrile seizures. Epilepsy Res 108:144–148CrossRefPubMedGoogle Scholar
  13. 13.
    Fukuchi M, Nii T, Ishimaru N, Minamino A, Hara D, Takasaki I, Tabuchi A, Tsuda M (2009) Valproic acid induces up- or down-regulation of gene expression responsible for the neuronal excitation and inhibition in rat cortical neurons through its epigenetic actions. Neurosci Res 65:35–43CrossRefPubMedGoogle Scholar
  14. 14.
    Zhang Z, Cai YQ, Zou F, Bie B, Pan ZZ (2011) Epigenetic suppression of GAD65 expression mediates persistent pain. Nat Med 17:1448–1455CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Banerjee K, Akiba Y, Baker H, Cave JW (2013) Epigenetic control of neurotransmitter expression in olfactory bulb interneurons. Int J Dev Neurosci Off J Int Soc Dev Neurosci 31:415–423CrossRefGoogle Scholar
  16. 16.
    Ueki N, Lee S, Sampson NS, Hayman MJ (2013) Selective cancer targeting with prodrugs activated by histone deacetylases and a tumour-associated protease. Nat Commun 4:2735CrossRefPubMedGoogle Scholar
  17. 17.
    Benson MJ, Manzanero S, Borges K (2015) Complex alterations in microglial M1/M2 markers during the development of epilepsy in two mouse models. Epilepsia 56:895–905CrossRefPubMedGoogle Scholar
  18. 18.
    Oliveira CV, Grigoletto J, Funck VR, Ribeiro LR, Royes LF, Fighera MR, Furian AF, Oliveira MS (2015) Evaluation of potential gender-related differences in behavioral and cognitive alterations following pilocarpine-induced status epilepticus in C57BL/6 mice. Physiol Behav 143:142–150CrossRefPubMedGoogle Scholar
  19. 19.
    Leung A, Ahn S, Savvidis G, Kim Y, Iskandar D, Luna MJ, Kim KS, Cunningham M, Chung S (2015) Optimization of pilocarpine-mediated seizure induction in immunodeficient NodScid mice. Epilepsy Res 109:114–118CrossRefPubMedGoogle Scholar
  20. 20.
    Castillo CG, Mendoza S, Freed WJ, Giordano M (2006) Intranigral transplants of immortalized GABAergic cells decrease the expression of kainic acid-induced seizures in the rat. Behav Brain Res 171:109–115CrossRefPubMedGoogle Scholar
  21. 21.
    Racine RJ (1972) Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol 32:281–294CrossRefPubMedGoogle Scholar
  22. 22.
    Racine R, Okujava V, Chipashvili S (1972) Modification of seizure activity by electrical stimulation. 3 Mechanisms. Electroencephalogr Clin Neurophysiol 32:295–299CrossRefPubMedGoogle Scholar
  23. 23.
    Fang M, Shen L, Yin H, Pan YM, Wang L, Chen D, Xi ZQ, Xiao Z, Wang XF, Zhou SN (2011) Downregulation of gephyrin in temporal lobe epilepsy neurons in humans and a rat model. Synapse 65:1006–1014CrossRefPubMedGoogle Scholar
  24. 24.
    Kash SF, Johnson RS, Tecott LH, Noebels JL, Mayfield RD, Hanahan D, Baekkeskov S (1997) Epilepsy in mice deficient in the 65-kDa isoform of glutamic acid decarboxylase. Proc Natl Acad Sci USA 94:14060–14065CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Mathew J, Balakrishnan S, Antony S, Abraham PM, Paulose CS (2012) Decreased GABA receptor in the cerebral cortex of epileptic rats: effect of Bacopa monnieri and Bacoside-A. J Biomed Sci 19:25CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Sakakibara T, Sukigara S, Otsuki T, Takahashi A, Kaneko Y, Kaido T, Saito Y, Sato N, Nakagawa E, Sugai K, Sasaki M, Goto Y, Itoh M (2012) Imbalance of interneuron distribution between neocortex and basal ganglia: consideration of epileptogenesis of focal cortical dysplasia. J Neurol Sci 323:128–133CrossRefPubMedGoogle Scholar
  27. 27.
    Darrah SD, Miller MA, Ren D, Hoh NZ, Scanlon JM, Conley YP, Wagner AK (2013) Genetic variability in glutamic acid decarboxylase genes: associations with post-traumatic seizures after severe TBI. Epilepsy Res 103:180–194CrossRefPubMedGoogle Scholar
  28. 28.
    Malter MP, Frisch C, Zeitler H, Surges R, Urbach H, Helmstaedter C, Elger CE, Bien CG (2015) Treatment of immune-mediated temporal lobe epilepsy with GAD antibodies. Seizure 30:57–63CrossRefPubMedGoogle Scholar
  29. 29.
    He S, Bausch SB (2014) Synaptic plasticity in glutamatergic and GABAergic neurotransmission following chronic memantine treatment in an in vitro model of limbic epileptogenesis. Neuropharmacology 77:379–386CrossRefPubMedGoogle Scholar
  30. 30.
    Alvestad S, Hammer J, Qu H, Haberg A, Ottersen OP, Sonnewald U (2011) Reduced astrocytic contribution to the turnover of glutamate, glutamine, and GABA characterizes the latent phase in the kainate model of temporal lobe epilepsy. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab 31:1675–1686CrossRefGoogle Scholar
  31. 31.
    Rajasekaran K, Kapur J, Bertram EH (2007) Alterations in GABA(A) receptor mediated inhibition in adjacent dorsal midline thalamic nuclei in a rat model of chronic limbic epilepsy. J Neurophysiol 98:2501–2508CrossRefPubMedGoogle Scholar
  32. 32.
    Austin JE, Buckmaster PS (2004) Recurrent excitation of granule cells with basal dendrites and low interneuron density and inhibitory postsynaptic current frequency in the dentate gyrus of macaque monkeys. J Comp Neurol 476:205–218CrossRefPubMedGoogle Scholar
  33. 33.
    Kobayashi M, Buckmaster PS (2003) Reduced inhibition of dentate granule cells in a model of temporal lobe epilepsy. J Neurosci Off J Soc Neurosci 23:2440–2452Google Scholar
  34. 34.
    Georgieva Z, Parton M (2014) Cerebellar ataxia and epilepsy with anti-GAD antibodies treatment with IVIG and plasmapheresis. BMJ Case Rep 2014:bcr2013202314CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Leke R, Silveira TR, Escobar TD, Schousboe A (2014) Expression of Glutamate Decarboxylase (GAD) mRNA in the brain of bile duct ligated rats serving as a model of hepatic encephalopathy. Neurochem Res 39:605–611CrossRefPubMedGoogle Scholar
  36. 36.
    Nasreen Z, Jameel T, Hasan A, Parveen N, Sadasivudu B (2012) Glutamate decarboxylase and GABA aminotransferase levels in different regions of rat brain on the onset of Leptazol induced convulsions. Neurochem Res 37:202–204CrossRefPubMedGoogle Scholar
  37. 37.
    Erlander MG, Tillakaratne NJ, Feldblum S, Patel N, Tobin AJ (1991) Two genes encode distinct glutamate decarboxylases. Neuron 7:91–100CrossRefPubMedGoogle Scholar
  38. 38.
    Esclapez M, Tillakaratne NJ, Kaufman DL, Tobin AJ, Houser CR (1994) Comparative localization of two forms of glutamic acid decarboxylase and their mRNAs in rat brain supports the concept of functional differences between the forms. J Neurosci Off J Soc Neurosci 14:1834–1855Google Scholar
  39. 39.
    Shen X, Liu Y, Xu S, Zhao Q, Wu H, Guo X, Shen R, Wang F (2014) Menin regulates spinal glutamate-GABA balance through GAD65 contributing to neuropathic pain. Pharmacol Rep PR 66:49–55CrossRefPubMedGoogle Scholar
  40. 40.
    Kundakovic M, Chen Y, Guidotti A, Grayson DR (2009) The reelin and GAD67 promoters are activated by epigenetic drugs that facilitate the disruption of local repressor complexes. Mol Pharmacol 75:342–354CrossRefPubMedGoogle Scholar
  41. 41.
    Krumholz A, Wiebe S, Gronseth G, Shinnar S, Levisohn P, Ting T, Hopp J, Shafer P, Morris H, Seiden L, Barkley G, French J, Quality Standards Subcommittee of the American Academy of N, American Epilepsy S (2007) Practice parameter: evaluating an apparent unprovoked first seizure in adults (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology and the American Epilepsy Society. Neurology 69:1996–2007CrossRefPubMedGoogle Scholar
  42. 42.
    Stuhmer T, Arts J, Chatterjee M, Borawski J, Wolff A, King P, Einsele H, Leo E, Bargou RC (2010) Preclinical anti-myeloma activity of the novel HDAC-inhibitor JNJ-26481585. Br J Haematol 149:529–536CrossRefPubMedGoogle Scholar
  43. 43.
    Capasso KE, Manners MT, Quershi RA, Tian Y, Gao R, Hu H, Barrett JE, Sacan A, Ajit SK (2015) Effect of histone deacetylase inhibitor JNJ-26481585 in pain. J Mol Neurosci MN 55:570–578CrossRefPubMedGoogle Scholar
  44. 44.
    Arts J, King P, Marien A, Floren W, Belien A, Janssen L, Pilatte I, Roux B, Decrane L, Gilissen R, Hickson I, Vreys V, Cox E, Bol K, Talloen W, Goris I, Andries L, Du Jardin M, Janicot M, Page M, van Emelen K, Angibaud P (2009) JNJ-26481585, a novel “second-generation” oral histone deacetylase inhibitor, shows broad-spectrum preclinical antitumoral activity. Clin Cancer Res Off J Am Assoc Cancer Res 15:6841–6851CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Jin-Gang Wang
    • 1
  • Qing Cai
    • 2
  • Jun Zheng
    • 1
  • Yu-Shu Dong
    • 3
  • Jin-Jiang Li
    • 3
  • Jing-Chen Li
    • 3
  • Guang-Zhi Hao
    • 3
  • Chao Wang
    • 2
    Email author
  • Ju-Lei Wang
    • 2
    Email author
  1. 1.Department of NeurosurgeryThe 463rd Hospital of PLAShenyangPeople’s Republic of China
  2. 2.Department of Neurosurgery and Institute for Functional Brain Disorders, Tangdu HospitalFourth Military Medical UniversityXi’anPeople’s Republic of China
  3. 3.Department of NeurosurgeryGeneral Hospital of Shenyang Military Command AreaShenyangPeople’s Republic of China

Personalised recommendations