Advertisement

Neurochemical Research

, Volume 41, Issue 7, pp 1612–1624 | Cite as

The Effects of Insulin-Induced Hypoglycaemia on Tyrosine Hydroxylase Phosphorylation in Rat Brain and Adrenal Gland

  • Manjula Senthilkumaran
  • Michaela E. Johnson
  • Larisa Bobrovskaya
Original Paper

Abstract

In this study we investigated the effects of insulin-induced hypoglycaemia on tyrosine hydroxylase (TH) protein and TH phosphorylation in the adrenal gland, C1 cell group, locus coeruleus (LC) and midbrain dopaminergic cell groups that are thought to play a role in response to hypoglycaemia and compared the effects of different concentrations of insulin in rats. Insulin (1 and 10 U/kg) treatment caused similar reductions in blood glucose concentration (from 7.5–9 to 2–3 mmol/L); however, plasma adrenaline concentration was increased 20–30 fold in response to 10 U/kg insulin and only 14 fold following 1 U/kg. Time course studies (at 10 U/kg insulin) revealed that in the adrenal gland, Ser31 phosphorylation was increased between 30 and 90 min (4–5 fold), implying that TH was activated to increase catecholamine synthesis in adrenal medulla to replenish the stores. In the brain, Ser19 phosphorylation was limited to certain dopaminergic groups in the midbrain, while Ser31 phosphorylation was increased in most catecholaminergic regions at 60 min (1.3–2 fold), suggesting that Ser31 phosphorylation may be an important mechanism to maintain catecholamine synthesis in the brain. Comparing the effects of 1 and 10 U/kg insulin revealed that Ser31 phosphorylation was increased to similar extent in the adrenal gland and C1 cell group in response to both doses whereas Ser31 and Ser19 phosphorylation were only increased in response to 1 U/kg insulin in LC and in response to 10 U/kg insulin in most midbrain regions. Thus, the adrenal gland and some catecholaminergic brain regions become activated in response to insulin administration and brain catecholamines may be important for initiation of physiological defences against insulin-induced hypoglycaemia.

Keywords

Hypoglycaemia Tyrosine hydroxylase Catecholamine cell group Adrenal gland 

Notes

Acknowledgments

We thank the Diabetes Australia Research Trust and the University of South Australia (Australia) for supporting this work. MS is a recipient of the University of South Australia Postgraduate Award. MEJ is a recipient of the Australian Postgraduate Award and University of South Australia top up scholarship. We would like to acknowledge the Reid animal facility staff for their help caring for the animals during the trial.

References

  1. 1.
    Cryer PE (2008) The barrier of hypoglycemia in diabetes. Diabetes 57(12):3169–3176. doi: 10.2337/db08-1084 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Verberne AJ, Gilbey MP (2012) Highlights in basic autonomic neurosciences: autonomic control of the counter-regulatory response and glucose homeostasis. Auton Neurosci 169(1):1–3. doi: 10.1016/j.autneu.2012.04.002 CrossRefPubMedGoogle Scholar
  3. 3.
    Cryer PE (2005) Mechanisms of hypoglycemia-associated autonomic failure and its component syndromes in diabetes. Diabetes 54(12):3592–3601. doi: 10.2337/diabetes.54.12.3592 CrossRefPubMedGoogle Scholar
  4. 4.
    Heller SR (2011) Hypoglycaemia: its pathophysiology in insulin treated diabetes and hypoglycaemia unawareness. Br J Diabetes Vasc Dis 11(1 suppl):6–9. doi: 10.1177/1474651410397248 CrossRefGoogle Scholar
  5. 5.
    Chan O, Paranjape SA, Horblitt A, Zhu W, Sherwin RS (2013) Lactate-induced release of GABA in the ventromedial hypothalamus contributes to counterregulatory failure in recurrent hypoglycemia and diabetes. Diabetes 62(12):4239–4246. doi: 10.2337/db13-0770 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Cryer PE (2010) Hypoglycemia in type 1 diabetes mellitus. Endocrinol Metab Clin North Am 39(3):641–654. doi: 10.1016/j.ecl.2010.05.003 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Vollmer RR, Baruchin A, Kolibal-Pegher SS, Corey SP, Stricker EM, Kaplan BB (1992) Selective activation of norepinephrine- and epinephrine-secreting chromaffin cells in rat adrenal medulla. Am J Physiol 263(3 Pt 2):R716–R721PubMedGoogle Scholar
  8. 8.
    Herlein JA, Morgan DA, Phillips BG, Haynes WG, Sivitz WI (2006) Antecedent hypoglycemia, catecholamine depletion, and subsequent sympathetic neural responses. Endocrinology 147(6):2781–2788. doi: 10.1210/en.2005-1247 CrossRefPubMedGoogle Scholar
  9. 9.
    Dunkley PR, Bobrovskaya L, Graham ME, von Nagy-Felsobuki EI, Dickson PW (2004) Tyrosine hydroxylase phosphorylation: regulation and consequences. J Neurochem 91(5):1025–1043. doi: 10.1111/j.1471-4159.2004.02797.x CrossRefPubMedGoogle Scholar
  10. 10.
    Nunez C, Laorden ML, Milanes MV (2007) Regulation of serine (Ser)-31 and Ser40 tyrosine hydroxylase phosphorylation during morphine withdrawal in the hypothalamic paraventricular nucleus and nucleus tractus solitarius-A2 cell group: role of ERK1/2. Endocrinology 148(12):5780–5793. doi: 10.1210/en.2007-0510 CrossRefPubMedGoogle Scholar
  11. 11.
    Damanhuri HA, Burke PG, Ong LK, Bobrovskaya L, Dickson PW, Dunkley PR, Goodchild AK (2012) Tyrosine hydroxylase phosphorylation in catecholaminergic brain regions: a marker of activation following acute hypotension and glucoprivation. PLoS ONE 7(11):e50535. doi: 10.1371/journal.pone.0050535 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ong LK, Guan L, Damanhuri H, Goodchild AK, Bobrovskaya L, Dickson PW, Dunkley PR (2014) Neurobiological consequences of acute footshock stress: effects on tyrosine hydroxylase phosphorylation and activation in the rat brain and adrenal medulla. J Neurochem 128(4):547–560. doi: 10.1111/jnc.12482 CrossRefPubMedGoogle Scholar
  13. 13.
    Sutherland C, Alterio J, Campbell DG, Le Bourdelles B, Mallet J, Haavik J, Cohen P (1993) Phosphorylation and activation of human tyrosine hydroxylase in vitro by mitogen-activated protein (MAP) kinase and MAP-kinase-activated kinases 1 and 2. Eur J Biochem 217(2):715–722CrossRefPubMedGoogle Scholar
  14. 14.
    Bobrovskaya L, Dunkley PR, Dickson PW (2004) Phosphorylation of Ser19 increases both Ser40 phosphorylation and enzyme activity of tyrosine hydroxylase in intact cells. J Neurochem 90(4):857–864. doi: 10.1111/j.1471-4159.2004.02550.x CrossRefPubMedGoogle Scholar
  15. 15.
    Lehmann IT, Bobrovskaya L, Gordon SL, Dunkley PR, Dickson PW (2006) Differential regulation of the human tyrosine hydroxylase isoforms via hierarchical phosphorylation. J Biol Chem 281(26):17644–17651. doi: 10.1074/jbc.M512194200 CrossRefPubMedGoogle Scholar
  16. 16.
    Ritter S, Llewellyn-Smith I, Dinh TT (1998) Subgroups of hindbrain catecholamine neurons are selectively activated by 2-deoxy-d-glucose induced metabolic challenge. Brain Res 805(1–2):41–54. doi: 10.1016/s0006-8993(98)00655-6 CrossRefPubMedGoogle Scholar
  17. 17.
    Parker LM, Kumar NN, Lonergan T, McMullan S, Goodchild AK (2013) Distribution and neurochemical characterization of neurons in the rat ventrolateral medulla activated by glucoprivation. Brain Struct Funct 8:8Google Scholar
  18. 18.
    Madden CJ, Stocker SD, Sved AF (2006) Attenuation of homeostatic responses to hypotension and glucoprivation after destruction of catecholaminergic rostral ventrolateral medulla neurons. Am J Physiol 291(3):R751–R759Google Scholar
  19. 19.
    Ritter S, Bugarith K, Dinh TT (2001) Immunotoxic destruction of distinct catecholamine subgroups produces selective impairment of glucoregulatory responses and neuronal activation. J Comp Neurol 432(2):197–216CrossRefPubMedGoogle Scholar
  20. 20.
    Li AJ, Wang Q, Ritter S (2011) Participation of hindbrain AMP-activated protein kinase in glucoprivic feeding. Diabetes 60(2):436–442. doi: 10.2337/db10-0352 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hudson B, Ritter S (2004) Hindbrain catecholamine neurons mediate consummatory responses to glucoprivation. Physiol Behav 82(2–3):241–250CrossRefPubMedGoogle Scholar
  22. 22.
    Ritter S, Dinh TT, Li AJ (2006) Hindbrain catecholamine neurons control multiple glucoregulatory responses. Physiol Behav 89(4):490–500CrossRefPubMedGoogle Scholar
  23. 23.
    Morilak DA, Fornal CA, Jacobs BL (1987) Effects of physiological manipulations on locus coeruleus neuronal activity in freely moving cats. III. Glucoregulatory challenge. Brain Res 422(1):32–39. doi: 10.1016/0006-8993(87)90537-3 CrossRefPubMedGoogle Scholar
  24. 24.
    Lapiz MD, Morilak DA (2006) Noradrenergic modulation of cognitive function in rat medial prefrontal cortex as measured by attentional set shifting capability. Neuroscience 137(3):1039–1049. doi: 10.1016/j.neuroscience.2005.09.031 CrossRefPubMedGoogle Scholar
  25. 25.
    Korf J, Aghajanian GK, Roth RH (1973) Increased turnover of norepinephrine in the rat cerebral cortex during stress: role of the locus coeruleus. Neuropharmacology 12(10):933–938CrossRefPubMedGoogle Scholar
  26. 26.
    Teves D, Videen TO, Cryer PE, Powers WJ (2004) Activation of human medial prefrontal cortex during autonomic responses to hypoglycemia. Proc Natl Acad Sci USA 101(16):6217–6221. doi: 10.1073/pnas.03070481010307048101 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Foote SL, Bloom FE, Aston-Jones G (1983) Nucleus locus ceruleus: new evidence of anatomical and physiological specificity. Physiol Rev 63(3):844–914PubMedGoogle Scholar
  28. 28.
    Narayanan NS, Guarnieri DJ, DiLeone RJ (2010) Metabolic hormones, dopamine circuits, and feeding. Front Neuroendocrinol 31(1):104–112. doi: 10.1016/j.yfrne.2009.10.004 CrossRefPubMedGoogle Scholar
  29. 29.
    Palmiter RD (2007) Is dopamine a physiologically relevant mediator of feeding behavior? Trends Neurosci 30(8):375–381. doi: 10.1016/j.tins.2007.06.004 CrossRefPubMedGoogle Scholar
  30. 30.
    Bello NT, Hajnal A (2006) Alterations in blood glucose levels under hyperinsulinemia affect accumbens dopamine. Physiol Behav 88(1–2):138–145. doi: 10.1016/j.physbeh.2006.03.027 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ong LK, Guan L, Stutz B, Dickson PW, Dunkley PR, Bobrovskaya L (2011) The effects of footshock and immobilization stress on tyrosine hydroxylase phosphorylation in the rat locus coeruleus and adrenal gland. Neuroscience 192:20–27. doi: 10.1016/j.neuroscience.2011.06.087 CrossRefPubMedGoogle Scholar
  32. 32.
    Ong LK, Bobrovskaya L, Walker FR, Day TA, Dickson PW, Dunkley PR (2011) The effect of social defeat on tyrosine hydroxylase phosphorylation in the rat brain and adrenal gland. Neurochem Res 36(1):27–33. doi: 10.1007/s11064-010-0255-7 CrossRefPubMedGoogle Scholar
  33. 33.
    Bobrovskaya L, Damanhuri HA, Ong LK, Schneider JJ, Dickson PW, Dunkley PR, Goodchild AK (2010) Signal transduction pathways and tyrosine hydroxylase regulation in the adrenal medulla following glucoprivation: an in vivo analysis. Neurochem Int 57(2):162–167. doi: 10.1016/j.neuint.2010.05.009 CrossRefPubMedGoogle Scholar
  34. 34.
    Gordon SL, Bobrovskaya L, Dunkley PR, Dickson PW (2009) Differential regulation of human tyrosine hydroxylase isoforms 1 and 2 in situ: isoform 2 is not phosphorylated at Ser35. Biochim Biophys Acta Mol Cell Res 1793(12):1860–1867. doi: 10.1016/j.bbamcr.2009.10.001 CrossRefGoogle Scholar
  35. 35.
    Gorton LM, Khan AM, Bohland M, Sanchez-Watts G, Donovan CM, Watts AG (2007) A role for the forebrain in mediating time-of-day differences in glucocorticoid counterregulatory responses to hypoglycemia in rats. Endocrinology 148(12):6026–6039. doi: 10.1210/en.2007-0194 CrossRefPubMedGoogle Scholar
  36. 36.
    Paxinos G, Watson C (2006) The rat brain in stereotaxic coordinates: hard, cover edn. Academic Press, LondonGoogle Scholar
  37. 37.
    de Vries MG, Lawson MA, Beverly JL (2004) Dissociation of hypothalamic noradrenergic activity and sympathoadrenal responses to recurrent hypoglycemia. Am J Physiol 286(5):R910–R915. doi: 10.1152/ajpregu.00254.2002 Google Scholar
  38. 38.
    LaGamma EF, Kirtok N, Chan O, Nankova BB (2014) Partial blockade of nicotinic acetylcholine receptors improves the counterregulatory response to hypoglycemia in recurrently hypoglycemic rats. Am J Physiol Endocrinol Metab 307(7):E580–E588. doi: 10.1152/ajpendo.00237.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Salvatore MF, Pruett BS, Spann SL, Dempsey C (2009) Aging reveals a role for nigral tyrosine hydroxylase ser31 phosphorylation in locomotor activity generation. PLoS ONE 4(12):e8466. doi: 10.1371/journal.pone.0008466 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Salvatore MF, Pruett BS (2012) Dichotomy of tyrosine hydroxylase and dopamine regulation between somatodendritic and terminal field areas of nigrostriatal and mesoaccumbens pathways. PLoS ONE 7(1):e29867. doi: 10.1371/journal.pone.0029867 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Sauter A, Goldstein M, Engel J, Ueta K (1983) Effect of insulin on central catecholamines. Brain Res 260(2):330–333CrossRefPubMedGoogle Scholar
  42. 42.
    Abbott SB, Holloway BB, Viar KE, Guyenet PG (2014) Vesicular glutamate transporter 2 is required for the respiratory and parasympathetic activation produced by optogenetic stimulation of catecholaminergic neurons in the rostral ventrolateral medulla of mice in vivo. Eur J Neurosci 39(1):98–106. doi: 10.1111/ejn.12421 CrossRefPubMedGoogle Scholar
  43. 43.
    McNeill H, Puddefoot JR, Vinson GP (1998) Map kinase in the rat adrenal gland. Endocr Res 24(3–4):373–380. doi: 10.3109/07435809809032617 CrossRefPubMedGoogle Scholar
  44. 44.
    Ortiz J, Harris H, Guitart X, Terwilliger R, Haycock J, Nestler E (1995) Extracellular signal-regulated protein kinases (ERKs) and ERK kinase (MEK) in brain: regional distribution and regulation by chronic morphine. J Neurosci 15(2):1285–1297PubMedGoogle Scholar
  45. 45.
    Moy LY, Tsai L-H (2004) Cyclin-dependent kinase 5 phosphorylates serine 31 of tyrosine hydroxylase and regulates its stability. J Biol Chem 279(52):54487–54493CrossRefPubMedGoogle Scholar
  46. 46.
    Erondu NE, Kennedy MB (1985) Regional distribution of type II Ca2+/calmodulin-dependent protein kinase in rat brain. J Neurosci 5(12):3270–3277PubMedGoogle Scholar
  47. 47.
    Solà C, Tusell JM, Serratosa J (1999) Comparative study of the distribution of calmodulin kinase II and calcineurin in the mouse brain. J Neurosci Res 57(5):651–662CrossRefPubMedGoogle Scholar
  48. 48.
    Yanagihara N, Toyohira Y, Yamamoto H, Ohta Y, Tsutsui M, Miyamoto E, Izumi F (1994) Occurrence and activation of Ca2+/calmodulin-dependent protein kinase II and its endogenous substrates in bovine adrenal medullary cells. Mol Pharmacol 46(3):423–430PubMedGoogle Scholar
  49. 49.
    Banks WA, Owen JB, Erickson MA (2012) Insulin in the brain: there and back again. Pharmacol Ther 136(1):82–93CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Haycock JW (1993) Multiple signaling pathways in bovine chromaffin cells regulate tyrosine hydroxylase phosphorylation at Ser19, Ser31, and Ser40. Neurochem Res 18(1):15–26CrossRefPubMedGoogle Scholar
  51. 51.
    Bobrovskaya L, Odell A, Leal RB, Dunkley PR (2001) Tyrosine hydroxylase phosphorylation in bovine adrenal chromaffin cells: the role of MAPKs after angiotensin II stimulation. J Neurochem 78(3):490–498CrossRefPubMedGoogle Scholar
  52. 52.
    McCrimmon RJ, Evans ML, Fan X, McNay EC, Chan O, Ding Y, Zhu W, Gram DX, Sherwin RS (2005) Activation of ATP-sensitive K+ channels in the ventromedial hypothalamus amplifies counterregulatory hormone responses to hypoglycemia in normal and recurrently hypoglycemic rats. Diabetes 54(11):3169–3174CrossRefPubMedGoogle Scholar
  53. 53.
    Orban BO, Routh VH, Levin BE, Berlin JR (2015) Direct effects of recurrent hypoglycaemia on adrenal catecholamine release. Diabetes Vascular Dis Res 12(1):2–12. doi: 10.1177/1479164114549755 CrossRefGoogle Scholar
  54. 54.
    Evans SB, Wilkinson CW, Bentson K, Gronbeck P, Zavosh A, Figlewicz DP (2001) PVN activation is suppressed by repeated hypoglycemia but not antecedent corticosterone in the rat. Am J Physiol Regul Integr Comp Physiol 281(5):R1426–R1436PubMedGoogle Scholar
  55. 55.
    Dunphy JL, Taylor RG, Fuller PJ (1998) Tissue distribution of rat glucagon receptor and GLP-1 receptor gene expression1. Mol Cell Endocrinol 141(1–2):179–186. doi: 10.1016/S0303-7207(98)00096-3 CrossRefPubMedGoogle Scholar
  56. 56.
    Hoosein NM, Gurd RS (1984) Identification of glucagon receptors in rat brain. Proc Natl Acad Sci USA 81(14):4368–4372CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Jiang G, Zhang BB (2003) Glucagon and regulation of glucose metabolism. Am J Physiol Endocrinol Metab 284(4):E671–E678. doi: 10.1152/ajpendo.00492.2002 CrossRefPubMedGoogle Scholar
  58. 58.
    Tekin I, Roskoski R Jr, Carkaci-Salli N, Vrana KE (2014) Complex molecular regulation of tyrosine hydroxylase. J Neural Transm 121(12):1451–1481CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Manjula Senthilkumaran
    • 1
  • Michaela E. Johnson
    • 1
  • Larisa Bobrovskaya
    • 1
  1. 1.School of Pharmacy and Medical Sciences, Sansom Institute for Health ResearchUniversity of South AustraliaAdelaideAustralia

Personalised recommendations