Neurochemical Research

, Volume 41, Issue 7, pp 1570–1577 | Cite as

(7R,8S)-Dehydrodiconiferyl Alcohol Suppresses Lipopolysaccharide-Induced Inflammatory Responses in BV2 Microglia by Inhibiting MAPK Signaling

  • Si-Yu Liu
  • Peng Xu
  • Xiao-Ling Luo
  • Jin-Feng HuEmail author
  • Xin-Hua LiuEmail author
Original Paper


(7R,8S)-Dehydrodiconiferyl alcohol (DDA), a lignan isolated from the dried stems of Clematis armandii, has been found to exert potential anti-inflammatory activity in vitro. In the present study, we investigated the effects and possible mechanisms of DDA on lipopolysaccharide (LPS)-mediated inflammatory response in murine BV2 microglia. Our results revealed that non-toxic concentrations (6.25–25 μM) of DDA markedly suppressed LPS-induced production of nitric oxide, expression of inducible nitric oxide synthase and cyclooxygenase-2, and release of inflammatory factors, including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 in a concentration dependent manner. In addition, DDA time- and concentration-dependently attenuated LPS-induced phosphorylation of c-Jun N-terminal kinase 1/2 (JNK), but not protein kinase B, p38, or extracellular signal-regulated kinase 1/2. Moreover, DDA significantly suppress LPS-mediated nuclear factor-κB (NF-κB) activation by inhibiting phosphorylation and nuclear translocation of NF-κB p65. Collectively, our results demonstrated that DDA inhibited LPS-stimulated inflammatory response in BV2 cell, at least in part, through inhibition of NF-κB activation and modulation of JNK signaling.


(7R,8S)-Dehydrodiconiferyl alcohol Lipopolysaccharide BV2 microglia Inflammation c-jun N-terminal kinase 1/2 



This work was supported by grants from National Natural Science Foundation of China (Nos. 81470164, 81573420 and 81330080) and the National Basic Research Program of China (973 Program, No. 2013CB530700).

Compliance with Ethical Standards

Conflict of interest

There are no conflicts of interest to declare.


  1. 1.
    Shivers KY, Nikolopoulou A, Machlovi SI, Vallabhajosula S, Figueiredo-Pereira ME (2014) PACAP27 prevents Parkinson-like neuronal loss and motor deficits but not microglia activation induced by prostaglandin J2. Biochim Biophys Acta 1842:1707–1719CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Zielasek J, Hartung HP (1996) Molecular mechanisms of microglial activation. Adv Neuroimmunol 6:191–222CrossRefPubMedGoogle Scholar
  3. 3.
    Wu PH, Shen YC, Wang YH, Chi CW, Yen JC (2006) Baicalein attenuates methamphetamine-induced loss of dopamine transporter in mouse striatum. Toxicology 226:238–245CrossRefPubMedGoogle Scholar
  4. 4.
    Frank-Cannon TC, Alto LT, McAlpine FE, Tansey MG (2009) Does neuroinflammation fan the flame in neurodegenerative diseases? Mol Neurodegener 4:47CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Fernandes A, Miller-Fleming L, Pais TF (2014) Microglia and inflammation: conspiracy, controversy or control? Cell Mol Life Sci 71:3969–3985CrossRefPubMedGoogle Scholar
  6. 6.
    Moreillon P, Majcherczyk PA (2003) Proinflammatory activity of cell-wall constituents from gram-positive bacteria. Scand J Infect Dis 35:632–641CrossRefPubMedGoogle Scholar
  7. 7.
    Firdous AP, Kuttan G, Kuttan R (2015) Anti-inflammatory potential of carotenoid meso-zeaxanthin and its mode of action. Pharm Biol 53:961–967CrossRefPubMedGoogle Scholar
  8. 8.
    Hirsch EC, Hunot S (2009) Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol 8:382–397CrossRefPubMedGoogle Scholar
  9. 9.
    Bhat NR, Zhang P, Lee JC, Hogan EL (1998) Extracellular signal-regulated kinase and p38 subgroups of mitogen-activated protein kinases regulate inducible nitric oxide synthase and tumor necrosis factor-alpha gene expression in endotoxin-stimulated primary glial cultures. J Neurosci 18:1633–1641PubMedGoogle Scholar
  10. 10.
    Liu Y, Zhang R, Yan K, Chen F, Huang W, Lv B, Sun C, Xu L, Li F, Jiang X (2014) Mesenchymal stem cells inhibit lipopolysaccharide-induced inflammatory responses of BV2 microglial cells through TSG-6. J Neuroinflamm 11:135CrossRefGoogle Scholar
  11. 11.
    Yu Z, Tang L, Chen L, Li J, Wu W, Hu C (2015) Capillarisin suppresses lipopolysaccharide-induced inflammatory mediators in BV2 microglial cells by suppressing TLR4-mediated NF-kappaB and MAPKs signaling pathway. Neurochem Res 40:1095–1101CrossRefPubMedGoogle Scholar
  12. 12.
    Pan LL, Liu XH, Gong QH, Zhu YZ (2011) S-Propargyl-cysteine (SPRC) attenuated lipopolysaccharide-induced inflammatory response in H9c2 cells involved in a hydrogen sulfide-dependent mechanism. Amino Acids 41:205–215CrossRefPubMedGoogle Scholar
  13. 13.
    Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140:918–934CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Xiong J, Bui VB, Liu XH, Hong ZL, Yang GX, Hu JF (2014) Lignans from the stems of Clematis armandii (“Chuan-Mu-Tong”) and their anti-neuroinflammatory activities. J Ethnopharmacol 153:737–743CrossRefPubMedGoogle Scholar
  15. 15.
    Chawla R, Kumar S, Sharma A (2012) The genus Clematis (Ranunculaceae): chemical and pharmacological perspectives. J Ethnopharmacol 143:116–150CrossRefPubMedGoogle Scholar
  16. 16.
    Yuen MSM, Xue F, Mak TCW, Wong HNC (1998) On the absolute structure of optically active neolignans containing a Dihydrobenzo[b] furan skelet. Tetrahedron 54:12429–12444CrossRefGoogle Scholar
  17. 17.
    Cohen-Kaminsky S, Hautefort A, Price L, Humbert M, Perros F (2014) Inflammation in pulmonary hypertension: what we know and what we could logically and safely target first. Drug Discov Today 19:1251–1256CrossRefPubMedGoogle Scholar
  18. 18.
    Tang Y, Fu Y, Xiong J, Li M, Ma GL, Yang GX, Wei BG, Zhao Y, Zhang HY, Hu JF, Casuarinines A-J (2013) Lycodine-type alkaloids from Lycopodiastrum casuarinoides. J Nat Prod 76:1475–1484CrossRefPubMedGoogle Scholar
  19. 19.
    Schaufelberger SA, Rosselli M, Barchiesi F, Gillespie DG, Jackson EK, Dubey RK (2016) 2-Methoxyestradiol, an endogenous 17beta-estradiol metabolite, inhibits microglial proliferation and activation via an estrogen receptor-independent mechanism. Am J Physiol Endocrinol Metab ajpendo-00418:02015Google Scholar
  20. 20.
    Ho HJ, Huang DY, Ho FM, Lee LT, Lin WW (2012) Inhibition of lipopolysaccharide-induced inducible nitric oxide synthase expression by endoplasmic reticulum stress. Cell Signal 24:2166–2178CrossRefPubMedGoogle Scholar
  21. 21.
    Lin YC, Kuo HC, Wang JS, Lin WW (2012) Regulation of inflammatory response by 3-methyladenine involves the coordinative actions on Akt and glycogen synthase kinase 3beta rather than autophagy. J Immunol 189:4154–4164CrossRefPubMedGoogle Scholar
  22. 22.
    Shin CY, Lee WJ, Choi JW, Choi MS, Park GH, Yoo BK, Han SY, Ryu JR, Choi EY, Ko KH (2007) Role of p38 MAPK on the down-regulation of matrix metalloproteinase-9 expression in rat astrocytes. Arch Pharm Res 30:624–633CrossRefPubMedGoogle Scholar
  23. 23.
    Li QT, Verma IM (2002) NF-kappa B regulation in the immune system. Nat Rev Immunol 2:725–734CrossRefPubMedGoogle Scholar
  24. 24.
    Jayasooriya RG, Lee KT, Kang CH, Dilshara MG, Lee HJ, Choi YH, Choi IW, Kim GY (2014) Isobutyrylshikonin inhibits lipopolysaccharide-induced nitric oxide and prostaglandin E2 production in BV2 microglial cells by suppressing the PI3K/Akt-mediated nuclear transcription factor-kappaB pathway. Nutr Res 34:1111–1119CrossRefPubMedGoogle Scholar
  25. 25.
    Zhang Y, Chen WA (2015) Biochanin A inhibits lipopolysaccharide-induced inflammatory cytokines and mediators production in BV2 microglia. Neurochem Res 40:165–171CrossRefPubMedGoogle Scholar
  26. 26.
    Saleem M, Hyoung JK, Ali MS, Yong SL (2005) An update on bioactive plant lignans. Nat Prod Rep 22:696–716CrossRefPubMedGoogle Scholar
  27. 27.
    Mizuno T (2012) The biphasic role of microglia in Alzheimer’s disease. Int J Alzheimers Dis 2012:737846PubMedPubMedCentralGoogle Scholar
  28. 28.
    Chao Y, Wong SC, Tan EK (2014) Evidence of inflammatory system involvement in Parkinson’s disease. Biomed Res Int 2014:308654PubMedPubMedCentralGoogle Scholar
  29. 29.
    Nelson L, Gard P, Tabet N (2014) Hypertension and inflammation in Alzheimer’s disease: close partners in disease development and progression! J Alzheimers Dis 41:331–343PubMedGoogle Scholar
  30. 30.
    Kim AR, Lee MS, Choi JW, Utsuki T, Kim JI, Jang BC, Kim HR (2013) Phlorofucofuroeckol A suppresses expression of inducible nitric oxide synthase, cyclooxygenase-2, and pro-inflammatory cytokines via inhibition of nuclear factor-kappaB, c-Jun NH2-terminal kinases, and Akt in microglial cells. Inflammation 36:259–271CrossRefPubMedGoogle Scholar
  31. 31.
    Barnes PJ, Karin M (1997) Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 336:1066–1071CrossRefPubMedGoogle Scholar
  32. 32.
    Waetzig V, Czeloth K, Hidding U, Mielke K, Kanzow M, Brecht S, Goetz M, Lucius R, Herdegen T, Hanisch UK (2005) c-Jun N-terminal kinases (JNKs) mediate pro-inflammatory actions of microglia. Glia 50:235–246CrossRefPubMedGoogle Scholar
  33. 33.
    Lim HW, Kumar H, Kim BW, More SV, Kim IW, Park JI, Park SY, Kim SK, Choi DK (2014) beta-Asarone (cis-2,4,5-trimethoxy-1-allyl phenyl), attenuates pro-inflammatory mediators by inhibiting NF-kappaB signaling and the JNK pathway in LPS activated BV-2 microglia cells. Food Chem Toxicol 72:265–272CrossRefPubMedGoogle Scholar
  34. 34.
    Hoogland IC, Houbolt C, van Westerloo DJ, van Gool WA, van de Beek D (2015) Systemic inflammation and microglial activation: systematic review of animal experiments. J Neuroinflamm 12:114CrossRefGoogle Scholar
  35. 35.
    Fu Y, Liu B, Zhang N, Liu Z, Liang D, Li F, Cao Y, Feng X, Zhang X, Yang Z (2013) Magnolol inhibits lipopolysaccharide-induced inflammatory response by interfering with TLR4 mediated NF-kappaB and MAPKs signaling pathways. J Ethnopharmacol 145:193–199CrossRefPubMedGoogle Scholar
  36. 36.
    Mattioli I, Sebald A, Bucher C, Charles RP, Nakano H, Doi T, Kracht M, Schmitz ML (2004) Transient and selective NF-kappa B p65 serine 536 phosphorylation induced by T cell costimulation is mediated by I kappa B kinase beta and controls the kinetics of p65 nuclear import. J Immunol 172:6336–6344CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Pharmacology, School of PharmacyFudan UniversityShanghaiChina
  2. 2.Department of Natural Products Chemistry, School of PharmacyFudan UniversityShanghaiChina

Personalised recommendations