Advertisement

Neurochemical Research

, Volume 41, Issue 1–2, pp 364–375 | Cite as

ATP-Evoked Intracellular Ca2+ Signaling of Different Supporting Cells in the Hearing Mouse Hemicochlea

  • T. Horváth
  • G. Polony
  • Á. Fekete
  • M. Aller
  • G. Halmos
  • B. Lendvai
  • A. Heinrich
  • B. Sperlágh
  • E. S. Vizi
  • T. ZellesEmail author
Original Paper

Abstract

Hearing and its protection is regulated by ATP-evoked Ca2+ signaling in the supporting cells of the organ of Corti, however, the unique anatomy of the cochlea hampers observing these mechanisms. For the first time, we have performed functional ratiometric Ca2+ imaging (fura-2) in three different supporting cell types in the hemicochlea preparation of hearing mice to measure purinergic receptor-mediated Ca2+ signaling in pillar, Deiters’ and Hensen’s cells. Their resting [Ca2+]i was determined and compared in the same type of preparation. ATP evoked reversible, repeatable and dose-dependent Ca2+ transients in all three cell types, showing desensitization. Inhibiting the Ca2+ signaling of the ionotropic P2X (omission of extracellular Ca2+) and metabotropic P2Y purinergic receptors (depletion of intracellular Ca2+ stores) revealed the involvement of both receptor types. Detection of P2X2,3,4,6,7 and P2Y1,2,6,12,14 receptor mRNAs by RT-PCR supported this finding and antagonism by PPADS suggested different functional purinergic receptor population in pillar versus Deiters’ and Hensen’s cells. The sum of the extra- and intracellular Ca2+-dependent components of the response was about equal with the control ATP response (linear additivity) in pillar cells, and showed supralinearity in Deiters’ and Hensen’s cells. Calcium-induced calcium release might explain this synergistic interaction. The more pronounced Ca2+ leak from the endoplasmic reticulum in Deiters’ and Hensen’s cells, unmasked by cyclopiazonic acid, may also suggests the higher activity of the internal stores in Ca2+ signaling in these cells. Differences in Ca2+ homeostasis and ATP-induced Ca2+ signaling might reflect the distinct roles these cells play in cochlear function and pathophysiology.

Keywords

Hemicochlea Ca2+ imaging ATP Pillar cells Deiters’ cells Hensen’s cells 

Abbreviations

AM

Acetoxymethyl

ATP

Adenosine triphosphate

[Ca2+]i

Intracellular Ca2+ concentration

CICR

Calcium-induced calcium release

CCD

Charge-coupled device

CPA

Cyclopiazonic acid

EC50

Half maximal effective concentration

EGTA

Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid

ER

Endoplasmic reticulum

PPADS

Pyridoxal-5-phosphate-6-azophenyl-2′,4′-disulphonic acid

RT-PCR

Real-time polymerase chain reaction

SERCA

Sarco/endoplasmic reticulum Ca2+-ATPase

Notes

Acknowledgments

This work was supported by the Hungarian-French Collaborative R&I Programme on Biotechnologies (TÉT_10-1-2011-0421) and the Hungarian Research and Development Fund (NN107234 and K116654). We thank Peter Dallos and Claus-Peter Richter for teaching us the preparation of the hemicochlea and László Köles for his advices concerning purinergic receptor pharmacology.

References

  1. 1.
    Monzack EL, Cunningham LL (2013) Lead roles for supporting actors: critical functions of inner ear supporting cells. Hear Res 303:20–29. doi: 10.1016/j.heares.2013.01.008 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Zhu Y, Liang C, Chen J et al (2013) Active cochlear amplification is dependent on supporting cell gap junctions. Nat Commun 4:1786. doi: 10.1038/ncomms2806 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Yu N, Zho HB (2009) Modulation of outer hair cell electromotility by cochlear supporting cells and gap junctions. PLoS ONE 4:e7923. doi: 10.1371/journal.pone.0007923 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Gale JE, Piazza V, Ciubotaru CD, Mammano F (2004) A mechanism for sensing noise damage in the inner ear. Curr Biol 14:526–529. doi: 10.1016/j.cub.2004.03.002 CrossRefPubMedGoogle Scholar
  5. 5.
    Housley GD, Bringmann A, Reichenbach A (2009) Purinergic signaling in special senses. Trends Neurosci 32:128–141. doi: 10.1016/j.tins.2009.01.001 CrossRefPubMedGoogle Scholar
  6. 6.
    Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H (2009) Purinergic signalling in the nervous system: an overview. Trends Neurosci 32:19–29. doi: 10.1016/j.tins.2008.10.001 CrossRefPubMedGoogle Scholar
  7. 7.
    Köles L, Gerevich Z, Oliveira JF et al (2008) Interaction of P2 purinergic receptors with cellular macromolecules. Naunyn Schmiedebergs Arch Pharmacol 377:1–33. doi: 10.1007/s00210-007-0222-2 CrossRefPubMedGoogle Scholar
  8. 8.
    Ceriani F, Mammano F (2012) Calcium signaling in the cochlea-molecular mechanisms and physiopathological implications. Cell Commun Signal 10:20. doi: 10.1186/1478-811X-10-20 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Mammano F, Bortolozzi M, Ortolano S, Anselmi F (2007) Ca2+ signaling in the inner ear. Physiol (Bethesda) 22:131–144. doi: 10.1152/physiol.00040.2006 CrossRefGoogle Scholar
  10. 10.
    White PN, Thorne PR, Housley GD et al (1995) Quinacrine staining of marginal cells in the stria vascularis of the guinea-pig cochlea: a possible source of extracellular ATP? Hear Res 90:97–105. doi: 10.1016/0378-5955(95)00151-1 CrossRefPubMedGoogle Scholar
  11. 11.
    Muñoz DJ, Kendrick IS, Rassam M, Thorne PR (2001) Vesicular storage of adenosine triphosphate in the guinea-pig cochlear lateral wall and concentrations of ATP in the endolymph during sound exposure and hypoxia. Acta Otolaryngol 121:10–15CrossRefPubMedGoogle Scholar
  12. 12.
    Wangemann P (1996) Ca2+-dependent release of ATP from the organ of corti measured with a luciferin-luciferase bioluminescence assay. Audit Neurosci 2:187–192Google Scholar
  13. 13.
    Zhao H-B, Yu N, Fleming CR (2005) Gap junctional hemichannel-mediated ATP release and hearing controls in the inner ear. Proc Natl Acad Sci USA 102:18724–18729. doi: 10.1073/pnas.0506481102 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lahne M, Gale JE (2010) Damage-induced cell-cell communication in different cochlear cell types via two distinct ATP-dependent Ca2+ waves. Purinergic Signal 6:189–200. doi: 10.1007/s11302-010-9193-8 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Mistrik P, Ashmore J (2009) The role of potassium recirculation in cochlear amplification. Curr Opin Otolaryngol Head Neck Surg 17:394–399. doi: 10.1097/MOO.0b013e328330366f CrossRefPubMedGoogle Scholar
  16. 16.
    Piazza V, Ciubotaru CD, Gale JE, Mammano F (2007) Purinergic signalling and intercellular Ca2+ wave propagation in the organ of Corti. Cell Calcium 41:77–86. doi: 10.1016/j.ceca.2006.05.005 CrossRefPubMedGoogle Scholar
  17. 17.
    Zhu Y, Zhao H-B (2010) ATP-mediated potassium recycling in the cochlear supporting cells. Purinergic Signal 6:221–229. doi: 10.1007/s11302-010-9184-9 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Beltramello M, Piazza V, Bukauskas FF et al (2005) Impaired permeability to Ins(1,4,5)P3 in a mutant connexin underlies recessive hereditary deafness. Nat Cell Biol 7:63–69. doi: 10.1038/ncb1205 CrossRefPubMedGoogle Scholar
  19. 19.
    Zhu Y, Chen J, Liang C et al (2015) Connexin26 (GJB2) deficiency reduces active cochlear amplification leading to late-onset hearing loss. Neuroscience 284:719–729. doi: 10.1016/j.neuroscience.2014.10.061 CrossRefPubMedGoogle Scholar
  20. 20.
    Bobbin RP (2001) ATP-induced movement of the stalks of isolated cochlear Deiters’ cells. NeuroReport 12:2923–2926. doi: 10.1097/00001756-200109170-00034 CrossRefPubMedGoogle Scholar
  21. 21.
    Dulon D, Blanchet C, Laffon E (1994) Photo-released intracellular Ca2+ evokes reversible mechanical responses in supporting cells of the guinea-pig organ of Corti. Biochem Biophys Res Commun 201:1263–1269. doi: 10.1006/bbrc.1994.1841 CrossRefPubMedGoogle Scholar
  22. 22.
    Dulon D, Moataz R, Mollard P (1993) Characterization of Ca2+ signals generated by extracellular nucleotides in supporting cells of the organ of Corti. Cell Calcium 14:245–254. doi: 10.1016/0143-4160(93)90071-D CrossRefPubMedGoogle Scholar
  23. 23.
    Chung JW, Schacht J (2001) ATP and nitric oxide modulate intracellular calcium in isolated pillar cells of the guinea pig cochlea. JARO J Assoc Res Otolaryngol 2:399–407. doi: 10.1007/s101620010058 CrossRefPubMedGoogle Scholar
  24. 24.
    Matsunobu T, Schacht J (2000) Nitric oxide/cyclic GMP pathway attenuates ATP-evoked intracellular calcium increase in supporting cells of the guinea pig cochlea. J Comp Neurol 423:452–461. doi: 10.1002/1096-9861(20000731)423:3<452:AID-CNE8>3.0.CO;2-Y CrossRefPubMedGoogle Scholar
  25. 25.
    Ashmore JF, Ohmori H (1990) Control of intracellular calcium by ATP in isolated outer hair cells of the guinea-pig cochlea. J Physiol 428:109–131CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Anselmi F, Hernandez VH, Crispino G et al (2008) ATP release through connexin hemichannels and gap junction transfer of second messengers propagate Ca2+ signals across the inner ear. Proc Natl Acad Sci USA 105:18770–18775. doi: 10.1073/pnas.0800793105 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Lin X, Webster P, Li Q et al (2003) Optical recordings of Ca2+ signaling activities from identified inner ear cells in cochlear slices and hemicochleae. Brain Res Protoc 11:92–100. doi: 10.1016/S1385-299X(03)00019-9 CrossRefGoogle Scholar
  28. 28.
    Lagostena L, Ashmore JF, Kachar B, Mammano F (2001) Purinergic control of intercellular communication between Hensen’s cells of the guinea-pig cochlea. J Physiol 531:693–706CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Lagostena L, Mammano F (2001) Intracellular calcium dynamics and membrane conductance changes evoked by Deiters’ cell purinoceptor activation in the organ of Corti. Cell Calcium 29:191–198. doi: 10.1054/ceca.2000.0183 CrossRefPubMedGoogle Scholar
  30. 30.
    Edge RM, Evans BN, Pearce M et al (1998) Morphology of the unfixed cochlea. Hear Res 124:1–16CrossRefPubMedGoogle Scholar
  31. 31.
    Richter CP, Evans BN, Edge R, Dallos P (1998) Basilar membrane vibration in the gerbil hemicochlea. J Neurophysiol 79:2255–2264PubMedGoogle Scholar
  32. 32.
    Hu X, Evans BN, Dallos P (1999) Direct visualization of organ of corti kinematics in a hemicochlea. J Neurophysiol 82:2798–2807PubMedGoogle Scholar
  33. 33.
    Keiler S, Richter CP (2001) Cochlear dimensions obtained in hemicochleae of four different strains of mice: cBA/CaJ, 129/CD1, 129/SvEv and C57BL/6J. Hear Res 162:91–104. doi: 10.1016/S0378-5955(01)00374-4 CrossRefPubMedGoogle Scholar
  34. 34.
    Ehret G (1976) Development of absolute auditory thresholds in the house mouse (Mus musculus). J Am Audiol Soc 1:179–184PubMedGoogle Scholar
  35. 35.
    Tritsch NX, Bergles DE (2010) Developmental regulation of spontaneous activity in the mammalian cochlea. J Neurosci 30:1539–1550. doi: 10.1523/JNEUROSCI.3875-09.2010 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Beutner D, Moser T (2001) The presynaptic function of mouse cochlear inner hair cells during development of hearing. J Neurosci 21:4593–4599PubMedGoogle Scholar
  37. 37.
    Housley GD, Marcotti W, Navaratnam D, Yamoah EN (2006) Hair cells—beyond the transducer. J Membr Biol 209:89–118. doi: 10.1007/s00232-005-0835-7 CrossRefPubMedGoogle Scholar
  38. 38.
    von Gersdorff H, Borst JGG (2002) Short-term plasticity at the calyx of held. Nat Rev Neurosci 3:53–64. doi: 10.1038/nrn705 CrossRefGoogle Scholar
  39. 39.
    Fekete A, Franklin L, Ikemoto T et al (2009) Mechanism of the persistent sodium current activator veratridine-evoked Ca2+ elevation: implication for epilepsy. J Neurochem 111:745–756. doi: 10.1111/j.1471-4159.2009.06368.x CrossRefPubMedGoogle Scholar
  40. 40.
    Zelles T, Franklin L, Koncz I et al (2001) The nootropic drug vinpocetine inhibits veratridine-induced [Ca2+]i increase in rat hippocampal CA1 pyramidal cells. Neurochem Res 26:1095–1100CrossRefPubMedGoogle Scholar
  41. 41.
    Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450PubMedGoogle Scholar
  42. 42.
    Sperlágh B, Szabó G, Erdélyi F et al (2003) Homo- and heteroexchange of adenine nucleotides and nucleosides in rat hippocampal slices by the nucleoside transport system. Br J Pharmacol 139:623–633. doi: 10.1038/sj.bjp.0705285 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Papp L, Balázsa T, Köfalvi A et al (2004) P2X receptor activation elicits transporter-mediated noradrenaline release from rat hippocampal slices. J Pharmacol Exp Ther 310:973–980. doi: 10.1124/jpet.104.066712 CrossRefPubMedGoogle Scholar
  44. 44.
    Bootman MD, Collins TJ, Peppiatt CM et al (2001) Calcium signalling—an overview. Semin Cell Dev Biol 12:3–10. doi: 10.1006/scdb.2000.0211 CrossRefPubMedGoogle Scholar
  45. 45.
    Mammano F (2013) ATP-dependent intercellular Ca2+ signaling in the developing cochlea: facts, fantasies and perspectives. Semin Cell Dev Biol 24:31–39. doi: 10.1016/j.semcdb.2012.09.004 CrossRefPubMedGoogle Scholar
  46. 46.
    Housley GD, Jagger DJ, Greenwood D et al (2002) Purinergic regulation of sound transduction and auditory neurotransmission. Audiol Neurootol 7:55–61. doi: 10.1159/000046865.CrossRefPubMedGoogle Scholar
  47. 47.
    Voigt J, Grosche A, Vogler S et al (2015) Nonvesicular release of ATP from rat retinal glial (Müller) cells is differentially mediated in response to osmotic stress and glutamate. Neurochem Res 40:651–660. doi: 10.1007/s11064-014-1511-z CrossRefPubMedGoogle Scholar
  48. 48.
    Vardjan N, Zorec R (2015) Excitable astrocytes: Ca(2 +)- and cAMP-regulated exocytosis. Neurochem Res. doi: 10.1007/s11064-015-1545-x PubMedGoogle Scholar
  49. 49.
    Scemes E, Spray DC (2012) Extracellular K+ and astrocyte signaling via connexin and pannexin channels. Neurochem Res 37:2310–2316. doi: 10.1007/s11064-012-0759-4 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Lazarowski ER, Boucher RC, Harden TK (2003) Mechanisms of release of nucleotides and integration of their action as P2X- and P2Y-receptor activating molecules. Mol Pharmacol 64:785–795. doi: 10.1124/mol.64.4.785 CrossRefPubMedGoogle Scholar
  51. 51.
    von Kügelgen I (2006) Pharmacological profiles of cloned mammalian P2Y-receptor subtypes. Pharmacol Ther 110:415–432. doi: 10.1016/j.pharmthera.2005.08.014 CrossRefGoogle Scholar
  52. 52.
    Gever JR, Cockayne DA, Dillon MP et al (2006) Pharmacology of P2X channels. Pflügers Arch Eur J Physiol 452:513–537. doi: 10.1007/s00424-006-0070-9 CrossRefGoogle Scholar
  53. 53.
    Hofer AM, Curci S, Machen TE, Schulz I (1996) ATP regulates calcium leak from agonist-sensitive internal calcium stores. FASEB J 10:302–308PubMedGoogle Scholar
  54. 54.
    Dyachok O, Tufveson G, Gylfe E (2004) Ca2+-induced Ca2+ release by activation of inositol 1,4,5-trisphosphate receptors in primary pancreatic β-cells. Cell Calcium 36:1–9. doi: 10.1016/j.ceca.2003.11.004 CrossRefPubMedGoogle Scholar
  55. 55.
    Beck A, Zur Nieden R, Schneider H-P, Deitmer JW (2004) Calcium release from intracellular stores in rodent astrocytes and neurons in situ. Cell Calcium 35:47–58CrossRefPubMedGoogle Scholar
  56. 56.
    Camello C, Lomax R, Petersen OH, Tepikin AV (2002) Calcium leak from intracellular store—the enigma of calcium signalling. Cell Calcium 32:355–361. doi: 10.1016/S0143416002001926 CrossRefPubMedGoogle Scholar
  57. 57.
    Endo M (2009) Calcium-induced calcium release in skeletal muscle. Physiol Rev 89:1153–1176. doi: 10.1152/physrev.00040.2008 CrossRefPubMedGoogle Scholar
  58. 58.
    Beurg M, Hafidi A, Skinner LJ et al (2005) Ryanodine receptors and BK channels act as a presynaptic depressor of neurotransmission in cochlear inner hair cells. Eur J Neurosci 22:1109–1119. doi: 10.1111/j.1460-9568.2005.04310.x CrossRefPubMedGoogle Scholar
  59. 59.
    Grant L, Slapnick S, Kennedy H, Hackney C (2006) Ryanodine receptor localisation in the mammalian cochlea: an ultrastructural study. Hear Res 219:101–109. doi: 10.1016/j.heares.2006.06.002 CrossRefPubMedGoogle Scholar
  60. 60.
    Morton-Jones RT, Cannell MB, Housley GD (2008) Ca2+ entry via AMPA-type glutamate receptors triggers Ca2+-induced Ca2+ release from ryanodine receptors in rat spiral ganglion neurons. Cell Calcium 43:356–366. doi: 10.1016/j.ceca.2007.07.003 CrossRefPubMedGoogle Scholar
  61. 61.
    Morton-Jones RT, Cannell MB, Jeyakumar LH et al (2006) Differential expression of ryanodine receptors in the rat cochlea. Neuroscience 137:275–286. doi: 10.1016/j.neuroscience.2005.09.011 CrossRefPubMedGoogle Scholar
  62. 62.
    Sato Y, Handa T, Matsumura M, Orita Y (1998) Gap junction change in supporting cells of the organ of Corti with ryanodine and caffeine. Acta Otolaryngol 118:821–825CrossRefPubMedGoogle Scholar
  63. 63.
    Bobbin RP (2002) Caffeine and ryanodine demonstrate a role for the ryanodine receptor in the organ of Corti. Hear Res 174:172–182Google Scholar
  64. 64.
    Liang Y, Huang L, Yang J (2009) Differential expression of ryanodine receptor in the developing rat cochlea. Eur J Histochem 53:249–260CrossRefPubMedGoogle Scholar
  65. 65.
    Hajnóczky G, Hager R, Thomas AP (1999) Mitochondria suppress local feedback activation of inositol 1,4, 5-trisphosphate receptors by Ca2+. J Biol Chem 274:14157–14162CrossRefPubMedGoogle Scholar
  66. 66.
    Sheppard CA, Simpson PB, Sharp AH et al (1997) Comparison of type 2 inositol 1,4,5-trisphosphate receptor distribution and subcellular Ca2+ release sites that support Ca2+ waves in cultured astrocytes. J Neurochem 68:2317–2327CrossRefPubMedGoogle Scholar
  67. 67.
    Rodriguez L, Simeonato E, Scimemi P et al (2012) Reduced phosphatidylinositol 4,5-bisphosphate synthesis impairs inner ear Ca2+ signaling and high-frequency hearing acquisition. Proc Natl Acad Sci USA 109:14013–14018. doi: 10.1073/pnas.1211869109 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Fechner FP, Burgess BJ, Adams JC et al (1998) Dense innervation of Deiters’ and Hensen’s cells persists after chronic deefferentation of guinea pig cochleas. J Comp Neurol 400:299–309. doi: 10.1002/(SICI)1096-9861(19981026)400:3<299:AID-CNE1>3.0.CO;2-3 CrossRefPubMedGoogle Scholar
  69. 69.
    Burgess BJ, Adams JC, Nadol JB (1997) Morphologic evidence for innervation of Deiters’ and Hensen’s cells in the guinea pig. Hear Res 108:74–82. doi: 10.1016/S0378-5955(97)00040-3 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • T. Horváth
    • 1
    • 2
  • G. Polony
    • 3
  • Á. Fekete
    • 4
  • M. Aller
    • 1
    • 8
  • G. Halmos
    • 5
  • B. Lendvai
    • 6
  • A. Heinrich
    • 7
  • B. Sperlágh
    • 7
  • E. S. Vizi
    • 7
  • T. Zelles
    • 1
    • 7
    Email author
  1. 1.Department of Pharmacology and PharmacotherapySemmelweis UniversityBudapestHungary
  2. 2.Department of Otorhinolaryngology, Head and Neck SurgeryBajcsy-Zsilinszky HospitalBudapestHungary
  3. 3.Department of Otorhinolaryngology, Head and Neck SurgerySemmelweis UniversityBudapestHungary
  4. 4.Program in Neurosciences and Mental HealthThe Hospital for Sick ChildrenTorontoCanada
  5. 5.Department of Otolaryngology, Head and Neck Surgery, University Medical Center GroningenUniversity of GroningenGroningenThe Netherlands
  6. 6.Pharmacological and Drug Safety ResearchBudapestHungary
  7. 7.Institute of Experimental MedicineHungarian Academy of SciencesBudapestHungary
  8. 8.Computational Cognitive Neuroimaging Laboratory, Computational Neuroscience and Cognitive Robotics CentreUniversity of BirminghamBirminghamUK

Personalised recommendations