Advertisement

Neurochemical Research

, Volume 41, Issue 5, pp 951–957 | Cite as

Anti-Inflammatory Effects of Ginsenoside-Rh2 Inhibits LPS-Induced Activation of Microglia and Overproduction of Inflammatory Mediators Via Modulation of TGF-β1/Smad Pathway

  • R Vinoth Kumar
  • Tae Woo Oh
  • Yong-Ki ParkEmail author
Short Communication

Abstract

Microglia activation plays an important role in neuroinflammation and contributes to several neurological disorders. Hence, inhibition of both microglia activation and pro-inflammatory cytokines may lead to the effective treatment of neurodegenerative diseases. In this study, we found that GRh2 inhibited the inflammatory response to lipopolysaccharide (LPS) and prevented the LPS-induced neurotoxicity in microglia cells. GRh2 significantly decreased the generation of nitric oxide production, and tumor necrosis factor-α, interleukin (IL)-6, IL-1β, cyclooxygenase-2 and inducible nitric oxide synthase in LPS-induced activated microglia cells. Furthermore, GRh2 (20 and 50 μM) significantly increased TGF-β1 expression and reduced the expression of Smad. These results suggest that GRh2 effectively inhibits microglia activation and production of pro-inflammatory cytokines via modulating the TGF-β1/Smad pathway.

Keywords

GRh2 Lipopolysaccharide BV-2 microglia cells TGF-β1/Smad 

Abbreviations

GRh2

Ginsenoside Rh2

LPS

Lipopolysaccharide

NO

Nitric oxide

INOS

Inducible nitric oxide synthesis

COX-2

Cyclooxygenase-2

TNF-α

Tumor necrosis factor-α

IL-6

Interleukin-6

IL-1β

Interleukin-1β

TGF-β

Transforming growth factor-β

Notes

Acknowledgments

This research was supported by a grant from the Oriental Medicine R&D Project, Ministry of Health, Welfare and Family Affairs (B100049), and the SRD II Scholarship Program of Dongguk University.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Perry VH, Teeling J (2013) Microglia and macrophages of the central nervous system: the contribution of microglia priming and systemic inflammation to chronic neurodegeneration. Semin Immunopathol 35:601–612CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Rojo LE, Fernandez JA, Maccioni AA, Jimenez JM, Maccioni RB (2008) Neuroinflammation: implications for the pathogenesis and molecular diagnosis of Alzheimer’s disease. Arch Med Res 39:1–16CrossRefPubMedGoogle Scholar
  3. 3.
    Von Bernhardi R, Eugenin-Von Bernhardi L, Eugenin J (2015) Microglial cell dysregulation in brain aging and neurodegeneration. Front Aging Neurosci 7:124Google Scholar
  4. 4.
    Dobolyi A, Vincze C, Pal G, Lovas G (2012) The Neuroprotective Functions of Transforming growth factor- beta Proteins. Int J Mol Sci 13:8219–8258CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Chen JH, Ke KF, Lu JH, Qiu YH, Peng YP (2015) Protection of TGF-β1 against neuroinflammation and neurodegeneration in Aβ1–42-induced Alzheimer’s disease model rats. PLoS One 10:e0116549CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Caraci F, Battaglia G, Bruno V, Bosco P, Carbonaro V, Giuffrida ML, Drago F, Sortino MA, Nicoletti F, Copani A (2011) TGF-β1 pathway as a new target for neuroprotection in Alzheimer’s disease. CNS Neurosci Ther 17:237–249CrossRefPubMedGoogle Scholar
  7. 7.
    Wyss-Coray T, Lin C, Yan F, Yu GQ, Rohde M, Mcconlogue L, Masliah E, Mucke L (2001) TGF-beta1 promotes microglial amyloid-beta clearance and reduces plaque burden in transgenic mice. Nat Med 7:612–618CrossRefPubMedGoogle Scholar
  8. 8.
    Tesseur I, Zou K, Esposito L, Bard F, Berber E, Can JV, Lin AH, Crews L, Tremblay P, Mathews P, Mucke L, Wyss-Coray T, Masliah E (2006) Deficiency in neuronal TGF-beta signaling promotes neurodegeneration and Alzheimer’s pathology. J Clin Invest 116:3060–3069CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Su X, Chen Q, Chen W, Chen T, Li W, Li Y, Dou X, Zhang Y, Shen Y, Wu H, Yu C (2014) Mycoepoxydiene inhibits activation of BV2 microglia stimulated by lipopolysaccharide through suppressing NF-κB, ERK 1/2 and toll-like receptor pathways. Int Immunopharmacol 19:88–93CrossRefPubMedGoogle Scholar
  10. 10.
    Bae EA, Kim EJ, Park JS, Kim HS, Ryu JH, Kim Dong-Hyun (2006) Ginsenoside RG3 and Rh2 inhibit the activation of AP-1 and protein kinase a pathway in lipopolysaccharide/interferon-gamma-stimulated BV-2 microglial cells. Planta Med 71:627–633CrossRefGoogle Scholar
  11. 11.
    Shieh PC, Tsao CW, Li JS, Wu HT, Wen YJ, Kou DH, Cheng JT (2008) Role of pituitary adenylatecyclase-activating polypeptide (PACAP) in the action of ginsenoside Rh2 against beta-amyloid-induced inhibition of rat brain astrocytes. Neurosci Lett 434:1–5CrossRefPubMedGoogle Scholar
  12. 12.
    Yi PF, Bi WY, Shen HQ, Wei Q, Zhang LY, Dong HB, Zhang C, Song Z, Qin QQ, Lv S, Wu SC, Fu BD, Wei XB (2013) Inhibitory effects of sulfated 20(S)-ginsenoside Rh2 on the release of pro-inflammatory mediators in LPS-induced RAW 264.7 cells. Eur J Pharmaco 712:60–66CrossRefGoogle Scholar
  13. 13.
    Liu Z, Chen HQ, Huang Y, Qiu YH, Peng YP (2015) Transforming growth factor-β1 acts via TβR-I on microglia to protect against MPP+-induced dopaminergic neuronal loss. Brain Behav Immun 1591:00430–00434Google Scholar
  14. 14.
    Caraci F, Battaglia G, Bruno V, Bosco P, Carbonaro V, Giuffrida ML, Drago F, Sortino MA, Nicoletti F, Copani A (2008) TGF-beta 1 protects against Abeta-neurotoxicity via the phosphatidylinositol-3-kinase pathway. Neurobiol Dis 30:234–242CrossRefPubMedGoogle Scholar
  15. 15.
    Huang WC, Yen FC, Shie FS, Pan CM, Shiao YJ, Yang CN, Huang FL, Sung YJ, Tsay HJ (2010) TGF-beta 1 blockade of microglial chemotaxis toward Abeta aggregates involves SMAD signaling and down regulation of CCL5. J Neuroinflammation 29:7–28Google Scholar
  16. 16.
    Shen WX, Chen JH, Lu JH, Peng YP, Qiu YH (2014) TGF-β1 protection against Aβ1–42-induced neuroinflammation and neurodegenration in rats. Int J Mol Sci 15:22092–22108CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Mitchell K, Shan JP, Tsytsikova LV, Campbell AM, Affram K, Symes AJ (2014) LPS antagonism of TGF-beta signaling results in prolonged survival and activation of rat primary microglia. J Neurochem 129:155–168CrossRefPubMedGoogle Scholar
  18. 18.
    Chen S, Luo D, Streit WJ, Harrison JK (2002) TGF-beta 1 up regulates CX3CR1 expression and inhibits fractalkine-stimulated signaling in rat microglia. J Neuroimmunol 133:46–55CrossRefPubMedGoogle Scholar
  19. 19.
    Song Lei, Yue Gu, Jie Jing, Bai Xiaoxue, Yang Ying, Liu Chaoying, Liu Qun (2014) Dab2 attenuates brain injury in APP/PS1 mice via targeting transforming growth factor-beta/SMAD signaling. Neural Regen Res 9:41–50CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Tichauer JE, Von Bernhardi R (2012) Transforming growth factor-beta stimulates amyloid uptake by microglia through smad-3 dependent mechanism. J Neurosci Res 90:1979–1980CrossRefGoogle Scholar
  21. 21.
    Spittau B, Wullkopf L, Zhou X, Rilka J, Pfeifer D, Krieglstein K (2013) Endogenous transforming growth factor-beta promotes quiescence of primary microglia in vitro. Glia 61:287–300CrossRefPubMedGoogle Scholar
  22. 22.
    Flores B, Von Bernhardi R (2012) Transforming growth factor beta-1 modulates amyloid-beta-induced glial activation through the smad-3 dependent induction of MAPK phosphatase-1. J Alzheimer Dis 32:417–429Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Herbology, College of Korean MedicineDongguk UniversityGyeongjuRepublic of Korea
  2. 2.Korean Medicine R&D CenterDongguk UniversityGyeongjuRepublic of Korea

Personalised recommendations