Neurochemical Research

, Volume 40, Issue 11, pp 2252–2261 | Cite as

CX3CR1 Mediates Nicotine Withdrawal-Induced Hyperalgesia via Microglial P38 MAPK Signaling

  • Yonghong Ding
  • Wenhui Shi
  • Guannan Xie
  • Ailan Yu
  • Qinghe Wang
  • Zongwang ZhangEmail author
Original Paper


Previously, we reported that nicotine withdrawal (NT) significantly increased pain sensitivity in rats. Recent reports suggest that fractalkine is involved in the spinal cord neuron-to-microglia activation via CX3CR1 signaling. However, its contribution to NT-induced hyperalgesia and the underlying mechanisms have yet to be elucidated. In the present study, a rat model of NT was used to test the changes in CX3CR1 expression in the spinal cord. We also evaluated the effect of the CX3CR1 neutralizing antibody on spinal microglial activity, the expression of phosphorylated p38-mitogen-activated protein kinase (p-p38-MAPK) and heat-induced pain responses. We established a NT model via subcutaneous injection of pure nicotine (3 mg/kg), three times daily for 7 days. The expression of CX3CR1 was studied by Western blot and immunofluorescence staining. Following NT, the rats received daily intrathecal injections of CX3CR1 neutralizing antibody for 3 days. The change in paw withdrawal latency (PWL) was observed. The activation of microglia and the expression of p-p38-MAPK were investigated by Western blot and immunofluorescence staining. The expression of CX3CR1 was significantly increased after NT and co-localized with IBA-1. NT rats treated with CX3CR1 neutralizing antibody showed significantly increased PWL on day 4 after NT. Furthermore, the activation of microglia and the expression of p-p38-MAPK in the spinal cord were suppressed. These results indicate that microglial CX3CR1/p38MAPK pathway is critical for the development of pain hypersensitivity after NT.


Nicotine withdrawal Hyperalgesia CX3CR1 Microglia p38 MAP kinase 



Nicotine withdrawal


Chemokine CX3C motif receptor




Phosphorylation of p38-mitogen-activated protein kinase


Cold pressor test


Protein kinase A


Protein kinase C


Calcium/calmodulin-dependent protein kinase II

p38 MAPK

p38-mitogen-activated protein kinase


Ionized calcium binding adapter molecule-1


Neuronal nucle


Glial fibrillary acidic protein


Paw withdrawal latency


Phosphate-buffered saline




Polyvinylidene fluoride membrane


Spared nerve injury




Toll-like receptor 4



This work was supported by grants from National Natural Science of China (81471134). Our great thanks also go to the critical scientific opinions of Prof. Li-Cai Zhang from Xuzhou Medical College.

Authors’ Contributions

ZWZ conceived and designed the study. YHD performed the animal surgery, behavioral testing and data analysis. WHS carried out the immunohistochemistry and Western blot. GNX, ALY and QHW participated in behavioral testing and immunohistochemistry experiments. All authors read and approved the final manuscript.

Compliance with Ethical Standards

Conflict of interest

The authors report no financial or other conflict of interest relevant to the subject of this manuscript.


  1. 1.
    Baiamonte BA, Valenza M, Roltsch EA, Whitaker AM, Baynes BB, Sabino V, Gilpin NW (2014) Nicotine dependence produces hyperalgesia: role of corticotropin-releasing factor-1 receptors (CRF1Rs) in the central amygdala (CeA). Neuropharmacology 77:217–223. doi: 10.1016/j.neuropharm.2013.09.025 CrossRefPubMedGoogle Scholar
  2. 2.
    Shi Y, Weingarten TN, Mantilla CB, Hooten WM, Warner DO (2010) Smoking and pain: pathophysiology and clinical implications. Anesthesiology 113(4):977–992. doi: 10.1097/ALN.0b013e3181ebdaf9 CrossRefPubMedGoogle Scholar
  3. 3.
    Liu Z, Liu XW, Lu SF, Yu AL, Zhang ZW (2014) Effect of nicotine withdrawal on pain sensitivity in rats to mechanical stimulation and thermal stimulation. Eur Rev Med Pharmacol Sci 18(18):2759–2765PubMedGoogle Scholar
  4. 4.
    Nakajima M, Al’Absi M (2014) Nicotine withdrawal and stress-induced changes in pain sensitivity: a cross-sectional investigation between abstinent smokers and nonsmokers. Psychophysiology 51(10):1015–1022. doi: 10.1111/psyp.12241 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bazan JF, Bacon KB, Hardiman G, Wang W, Soo K, Rossi D, Greaves DR, Zlotnik A, Schall TJ (1997) A new class of membrane-bound chemokine with a CX3C motif. Nature 385(6617):640–644. doi: 10.1038/385640a0 CrossRefPubMedGoogle Scholar
  6. 6.
    Lindia JA, McGowan E, Jochnowitz N, Abbadie C (2005) Induction of CX3CL1 expression in astrocytes and CX3CR1 in microglia in the spinal cord of a rat model of neuropathic pain. J Pain 6(7):434–438. doi: 10.1016/j.jpain.2005.02.001 CrossRefPubMedGoogle Scholar
  7. 7.
    Clark AK, Yip PK, Grist J, Gentry C, Staniland AA, Marchand F, Dehvari M, Wotherspoon G, Winter J, Ullah J, Bevan S, Malcangio M (2007) Inhibition of spinal microglial cathepsin S for the reversal of neuropathic pain. Proc Natl Acad Sci USA 104(25):10655–10660. doi: 10.1073/pnas.0610811104 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    O’Callaghan JP, Miller DB (2010) Spinal glia and chronic pain. Metabolism 59(Suppl 1):S21–S26. doi: 10.1016/j.metabol.2010.07.011 CrossRefPubMedGoogle Scholar
  9. 9.
    Rostene W, Kitabgi P, Parsadaniantz SM (2007) Chemokines: A new class of neuromodulator? Nat Rev Neurosci 8(11):895–903. doi: 10.1038/nrn2255 CrossRefPubMedGoogle Scholar
  10. 10.
    Cao H, Zhang YQ (2008) Spinal glial activation contributes to pathological pain states. Neurosci Biobehav Rev 32(5):972–983. doi: 10.1016/j.neubiorev.2008.03.009 CrossRefPubMedGoogle Scholar
  11. 11.
    Zimmermann M (2001) Pathobiology of neuropathic pain. Eur J Pharmacol 429(1–3):23–37CrossRefPubMedGoogle Scholar
  12. 12.
    Fang L, Wu J, Lin Q, Willis WD (2002) Calcium-calmodulin-dependent protein kinase II contributes to spinal cord central sensitization. J Neurosci 22(10):4196–4204PubMedGoogle Scholar
  13. 13.
    Zhang FE, Cao JL, Zhang LC, Zeng YM (2005) Activation of p38 mitogen-activated protein kinase in spinal cord contributes to chronic constriction injury-induced neuropathic pain. Acta Physiol Sin 57(5):545–551Google Scholar
  14. 14.
    Xu JJ, Walla BC, Diaz MF, Fuller GN, Gutstein HB (2006) Intermittent lumbar puncture in rats: a novel method for the experimental study of opioid tolerance. Anesth Analg 103(3):714–720. doi: 10.1213/01.ane.0000226100.46866.ea CrossRefPubMedGoogle Scholar
  15. 15.
    Yamamoto T, Yaksh TL (1992) Comparison of the antinociceptive effects of pre- and posttreatment with intrathecal morphine and MK801, an NMDA antagonist, on the formalin test in the rat. Anesthesiology 77(4):757–763CrossRefPubMedGoogle Scholar
  16. 16.
    Hargreaves K, Dubner R, Brown F, Flores C, Joris J (1988) A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain 32(1):77–88CrossRefPubMedGoogle Scholar
  17. 17.
    Flood P, Daniel D (2004) Intranasal nicotine for postoperative pain treatment. Anesthesiology 101(6):1417–1421CrossRefPubMedGoogle Scholar
  18. 18.
    Simons CT, Cuellar JM, Moore JA, Pinkerton KE, Uyeminami D, Carstens MI, Carstens E (2005) Nicotinic receptor involvement in antinociception induced by exposure to cigarette smoke. Neurosci Lett 389(2):71–76. doi: 10.1016/j.neulet.2005.07.025 CrossRefPubMedGoogle Scholar
  19. 19.
    Dussor GO, Leong AS, Gracia NB, Kilo S, Price TJ, Hargreaves KM, Flores CM (2003) Potentiation of evoked calcitonin gene-related peptide release from oral mucosa: a potential basis for the pro-inflammatory effects of nicotine. Eur J Neurosci 18(9):2515–2526CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Lutz JA, Kulshrestha M, Rogers DT, Littleton JM (2014) A nicotinic receptor-mediated anti-inflammatory effect of the flavonoid rhamnetin in BV2 microglia. Fitoterapia 98:11–21. doi: 10.1016/j.fitote.2014.06.012 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Guan YZ, Jin XD, Guan LX, Yan HC, Wang P, Gong Z, Li SJ, Cao X, Xing YL, Gao TM (2014) Nicotine inhibits microglial proliferation and is neuroprotective in global ischemia rats. Mol Neurobiol. doi: 10.1007/s12035-014-8825-3 Google Scholar
  22. 22.
    Hsu C, Harden RN, Houle T (2002) Nicotine and caffeine intake in complex regional pain syndrome. J Back Musculoskelet Rehabil 16(1):33–38CrossRefPubMedGoogle Scholar
  23. 23.
    Liu PY, Lu CL, Wang CC, Lee IH, Hsieh JC, Chen CC, Lee HF, Lin HC, Chang FY, Lee SD (2012) Spinal microglia initiate and maintain hyperalgesia in a rat model of chronic pancreatitis. Gastroenterology 142(1):165–173. doi: 10.1053/j.gastro.2011.09.041 (e162) CrossRefPubMedGoogle Scholar
  24. 24.
    Clark AK, Malcangio M (2014) Fractalkine/CX3CR1 signaling during neuropathic pain. Front Cell Neurosci 8:121. doi: 10.3389/fncel.2014.00121 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Sun S, Cao H, Han M, Li TT, Pan HL, Zhao ZQ, Zhang YQ (2007) New evidence for the involvement of spinal fractalkine receptor in pain facilitation and spinal glial activation in rat model of monoarthritis. Pain 129(1–2):64–75. doi: 10.1016/j.pain.2006.09.035 PubMedGoogle Scholar
  26. 26.
    Holmes FE, Arnott N, Vanderplank P, Kerr NC, Longbrake EE, Popovich PG, Imai T, Combadiere C, Murphy PM, Wynick D (2008) Intra-neural administration of fractalkine attenuates neuropathic pain-related behaviour. J Neurochem 106(2):640–649. doi: 10.1111/j.1471-4159.2008.05419.x CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Ji RR, Suter MR (2007) p38 MAPK, microglial signaling, and neuropathic pain. Mol Pain 3:33. doi: 10.1186/1744-8069-3-33 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Hu JH, Yang JP, Liu L, Li CF, Wang LN, Ji FH, Cheng H (2012) Involvement of CX3CR1 in bone cancer pain through the activation of microglia p38 MAPK pathway in the spinal cord. Brain Res 1465:1–9. doi: 10.1016/j.brainres.2012.05.020 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Yonghong Ding
    • 1
    • 2
    • 3
  • Wenhui Shi
    • 1
    • 2
  • Guannan Xie
    • 3
  • Ailan Yu
    • 3
  • Qinghe Wang
    • 1
    • 2
  • Zongwang Zhang
    • 1
    • 2
    • 3
    Email author
  1. 1.Jiangsu Province Key Laboratory of AnesthesiologyXuzhouPeople’s Republic of China
  2. 2.Jiangsu Key Laboratory of Anesthesia and Analgesia Application TechnologyXuzhouPeople’s Republic of China
  3. 3.Department of AnesthesiologyLiaocheng People’s HospitalLiaocheng CityPeople’s Republic of China

Personalised recommendations